Lobachevskii Journal of Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Lobachevskii J. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Lobachevskii Journal of Mathematics, 2006, Volume 21, Pages 3–31 (Mi ljm45)  

This article is cited in 34 scientific papers (total in 35 papers)

Hardy type inequalities in higher dimensions with explicit estimate of constants

F. G. Avkhadiev

Kazan State University
References:
Abstract: Let $\Omega$ be an open set in $\mathbb R^n$ such that $\Omega\ne\mathbb R^n$. For $1\le p<\infty$, $1<s<\infty$ and $\delta=\operatorname{dist}(x,\partial\Omega)$ we estimate the Hardy constant
$$ c_p(s,\Omega)=\sup\{\|f/\delta^{s/p}\|_{L^p(\Omega)}:f\in C_0^\infty(\Omega),\ \|(\nabla f)/\delta^{s/p-1}\|_{L^p(\Omega)}=1\} $$
and some related quantities.
For open sets $\Omega\subset\mathbb R^2$ we prove the following bilateral estimates
$$ \min\{2,p\}M_0(\Omega)\le c_p(2,\Omega)\le 2p(\pi M_0(\Omega)+a_0)^2, \quad a_0=4.38, $$
where $M_0(\Omega)$ is the geometrical parameter defined as the maximum modulus of ring domains in $\Omega$ with center on $\partial\Omega$. Since the condition $M_0 (\Omega)<\infty$ means the uniformly perfectness of $\partial\Omega$, these estimates give a direct proof of the following Ancona–Pommerenke theorem: $c_2(2,\Omega)$ is finite if and only if the boundary set $\partial\Omega$ is uniformly perfect (see [2], [22] and [40]).
Moreover, we obtain the following direct extension of the one dimensional Hardy inequality to the case $n\ge 2$: if $s>n$, then for arbitrary open sets $\Omega\subset\mathbb R^n$ ($\Omega\ne\mathbb R^n$) and any $p\in[1,\infty)$ the sharp inequality $c_p(s,\Omega)\le p/(s-n)$ is valid. This gives a solution of a known problem due to J. L. Lewis [31] and A. Wannebo [44].
Estimates of constants in certain other Hardy and Rellich type inequalities are also considered. In particular, we obtain an improved version of a Hardy type inequality by H. Brezis and M. Marcus [13] for convex domains and give its generalizations.
Keywords: Hardy type inequalities, distance to the boundary, uniformly perfect sets, Rellich type inequalities.
Received: 09.03.2006
Bibliographic databases:
Language: English
Citation: F. G. Avkhadiev, “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31
Citation in format AMSBIB
\Bibitem{Avk06}
\by F.~G.~Avkhadiev
\paper Hardy type inequalities in higher dimensions with explicit estimate of constants
\jour Lobachevskii J. Math.
\yr 2006
\vol 21
\pages 3--31
\mathnet{http://mi.mathnet.ru/ljm45}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2220697}
\zmath{https://zbmath.org/?q=an:1120.26008}
\elib{https://elibrary.ru/item.asp?id=13513360}
Linking options:
  • https://www.mathnet.ru/eng/ljm45
  • https://www.mathnet.ru/eng/ljm/v21/p3
  • This publication is cited in the following 35 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Lobachevskii Journal of Mathematics
    Statistics & downloads:
    Abstract page:1137
    Full-text PDF :544
    References:248
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024