Lobachevskii Journal of Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Lobachevskii J. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Lobachevskii Journal of Mathematics, 2007, Volume 27, Pages 3–13 (Mi ljm35)  

On $\phi$-recurrent generalized $(k,\mu)$-contact metric manifolds

K. K. Baishya, S. Eyasmin, A. A. Shaikh

University of Burdwan
References:
Abstract: The aim of the present paper is to introduce a type of contact metric manifolds called $\phi$-recurrent generalized $(k,\mu)$-contact metric manifolds and to study their geometric properties. The existence of such manifolds is ensured by a non-trivial example.
Keywords: $(k,\mu)$-contact metric manifold, generalized $(k,\mu)$-contact metric manifold, locally $\phi$-symmetric and locally $\phi$-recurrent $(k,\mu)$-contact metric manifold.
Submitted by: M. A. Malakhaltsev
Received: 09.06.2007
Bibliographic databases:
Language: English
Citation: K. K. Baishya, S. Eyasmin, A. A. Shaikh, “On $\phi$-recurrent generalized $(k,\mu)$-contact metric manifolds”, Lobachevskii J. Math., 27 (2007), 3–13
Citation in format AMSBIB
\Bibitem{BaiEyaSha07}
\by K.~K.~Baishya, S.~Eyasmin, A.~A.~Shaikh
\paper On $\phi$-recurrent generalized $(k,\mu)$-contact metric manifolds
\jour Lobachevskii J. Math.
\yr 2007
\vol 27
\pages 3--13
\mathnet{http://mi.mathnet.ru/ljm35}
\zmath{https://zbmath.org/?q=an:1143.53031}
Linking options:
  • https://www.mathnet.ru/eng/ljm35
  • https://www.mathnet.ru/eng/ljm/v27/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Lobachevskii Journal of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025