Lobachevskii Journal of Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Lobachevskii J. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Lobachevskii Journal of Mathematics, 1999, Volume 3, Pages 127–145 (Mi ljm164)  

Cohomological approach to poisson structures on nonlinear evolution equations

I. S. Krasil'shchikab

a Independent University of Moscow
b All-Union Correspondence Engineering-Construction Institute
Abstract: Let $\mathcal E$ be a differential equation, and let $\mathcal F=\mathcal F(\mathcal E)$ be the function algebra on the infinite prolongation $\mathcal E^\infty$. Consider the algebra $\mathcal A=\Lambda^*(\mathcal F)$ of differential forms on $\mathcal F$ endowed with the horizontal differential $d_h\colon\mathcal A\to\mathcal A$. A Poisson structure $\mathsf P$ on $\mathcal E$ is understood as the homotopy equivalence class (with respect to $d_h$) of a skew-symmetric super bidifferential operator $\mathsf P$ in $\mathcal A$ satisfying the condition $[\![\mathsf P,\mathsf P]\!]^s=0$, $[\![\bullet,\bullet]\!]^s$ being the super Schouten bracket.
A description of Poisson structures for an evolution equation with an arbitrary number of space variables is given. It is shown that the computations, in essence, reduce to solving the operator equation $P\circ\widehat\ell_{\mathcal E}+\ell_{\mathcal E}\circ P=0$. We demonstrate that known structures for some evolution equations (e.g., the KdV equation) are special cases of those considered here.
Keywords: nonlinear evolution differential equations, Poisson structures, Hamiltonian formalism.
Submitted by: B. N. Shapukov
Received: 27.07.1999
Bibliographic databases:
Language: English
Citation: I. S. Krasil'shchik, “Cohomological approach to poisson structures on nonlinear evolution equations”, Lobachevskii J. Math., 3 (1999), 127–145
Citation in format AMSBIB
\Bibitem{Kra99}
\by I.~S.~Krasil'shchik
\paper Cohomological approach to poisson structures on nonlinear evolution equations
\jour Lobachevskii J. Math.
\yr 1999
\vol 3
\pages 127--145
\mathnet{http://mi.mathnet.ru/ljm164}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1743135}
\zmath{https://zbmath.org/?q=an:0938.35010}
Linking options:
  • https://www.mathnet.ru/eng/ljm164
  • https://www.mathnet.ru/eng/ljm/v3/p127
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Lobachevskii Journal of Mathematics
    Statistics & downloads:
    Abstract page:217
    Full-text PDF :95
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024