|
Lobachevskii Journal of Mathematics, 2002, Volume 10, Pages 3–8
(Mi ljm121)
|
|
|
|
Infinite dimensional extension of A. P. Calderón's theorem on positive semidefinite biquadraric forms
B. Aqzzouz, M. Kadiri Université Ibn Tofaïl
Abstract:
We extend to the infinite dimensional separable real Hilbert spaces a theorem of A. P. Calderón which says that, if $m=2$ or $n=2$, then every positive semidefinite biquadratic form on $\mathbf R^m\times\mathbf R^n$ is a sum of squares of bilinear forms.
Keywords:
biquadratic form, positive operator, Hilbert–Schmidt operator.
Citation:
B. Aqzzouz, M. Kadiri, “Infinite dimensional extension of A. P. Calderón's theorem on positive semidefinite biquadraric forms”, Lobachevskii J. Math., 10 (2002), 3–8
Linking options:
https://www.mathnet.ru/eng/ljm121 https://www.mathnet.ru/eng/ljm/v10/p3
|
|