|
Lobachevskii Journal of Mathematics, 2002, Volume 11, Pages 7–12
(Mi ljm114)
|
|
|
|
On the coefficient multipliers theorem of Hardy and Littlewood
F. G. Avkhadieva, K.-J. Wirthsb a Kazan State University
b Technische Universität Braunschweig, Institut für Analysis und Algebra
Abstract:
Let $a_n(f)$ be the Taylor coefficients of a holomorphic function $f$ which belongs to the Hardy space $H^p$, $0<p<1$. We prove the estimate $C(p)\leq\pi\epsilon^p/[p(1-p)]$ in the Hardy-Littlewood inequality
$$
\sum_{n=0}^\infty\frac{|a_n(f)|^p}{(n+1)^{2-p}}\leq C(p)(\| f \|_p)^p.
$$
We also give explicit estimates for sums $\sum|a_n(f)\lambda_n|^s$ the mixed norm
space $H(1,s,\beta)$. In this way we obtain a new version of some results by
Blasco and by Jevtič and Pavlovič.
Received: 26.11.2002
Citation:
F. G. Avkhadiev, K.-J. Wirths, “On the coefficient multipliers theorem of Hardy and Littlewood”, Lobachevskii J. Math., 11 (2002), 7–12
Linking options:
https://www.mathnet.ru/eng/ljm114 https://www.mathnet.ru/eng/ljm/v11/p7
|
Statistics & downloads: |
Abstract page: | 527 | Full-text PDF : | 195 | References: | 138 |
|