Lobachevskii Journal of Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Lobachevskii J. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Lobachevskii Journal of Mathematics, 2002, Volume 11, Pages 7–12 (Mi ljm114)  

On the coefficient multipliers theorem of Hardy and Littlewood

F. G. Avkhadieva, K.-J. Wirthsb

a Kazan State University
b Technische Universität Braunschweig, Institut für Analysis und Algebra
References:
Abstract: Let $a_n(f)$ be the Taylor coefficients of a holomorphic function $f$ which belongs to the Hardy space $H^p$, $0<p<1$. We prove the estimate $C(p)\leq\pi\epsilon^p/[p(1-p)]$ in the Hardy-Littlewood inequality
$$ \sum_{n=0}^\infty\frac{|a_n(f)|^p}{(n+1)^{2-p}}\leq C(p)(\| f \|_p)^p. $$
We also give explicit estimates for sums $\sum|a_n(f)\lambda_n|^s$ the mixed norm space $H(1,s,\beta)$. In this way we obtain a new version of some results by Blasco and by Jevtič and Pavlovič.
Received: 26.11.2002
Bibliographic databases:
Language: English
Citation: F. G. Avkhadiev, K.-J. Wirths, “On the coefficient multipliers theorem of Hardy and Littlewood”, Lobachevskii J. Math., 11 (2002), 7–12
Citation in format AMSBIB
\Bibitem{AvkWir02}
\by F.~G.~Avkhadiev, K.-J.~Wirths
\paper On the coefficient multipliers theorem of Hardy and Littlewood
\jour Lobachevskii J. Math.
\yr 2002
\vol 11
\pages 7--12
\mathnet{http://mi.mathnet.ru/ljm114}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1946352}
\zmath{https://zbmath.org/?q=an:1032.46037}
Linking options:
  • https://www.mathnet.ru/eng/ljm114
  • https://www.mathnet.ru/eng/ljm/v11/p7
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Lobachevskii Journal of Mathematics
    Statistics & downloads:
    Abstract page:527
    Full-text PDF :195
    References:138
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024