Lobachevskii Journal of Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Lobachevskii J. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Lobachevskii Journal of Mathematics, 2002, Volume 11, Pages 3–6 (Mi ljm113)  

A note on minimal and maximal ideals of ordered semigroups

M. M. Arslanova, N. Kehayopulub

a Kazan State University
b National and Capodistrian University of Athens, Department of Mathematics
References:
Abstract: Ideals of ordered groupoids were defined by second author in [2]. Considering the question under what conditions an ordered semigroup (or semigroup) contains at most one maximal ideal we prove that in an ordered groupoid $S$ without zero there is at most one minimal ideal which is the intersection of all ideals of $S$. In an ordered semigroup, for which there exists an element a $\in S$ such that the ideal of $S$ generated by $a$ is $S$, there is at most one maximal ideal which is the union of all proper ideals of $S$. In ordered semigroups containing unit, there is at most one maximal ideal which is the union of all proper ideals of $S$.
Received: 20.10.2002
Bibliographic databases:
Language: English
Citation: M. M. Arslanov, N. Kehayopulu, “A note on minimal and maximal ideals of ordered semigroups”, Lobachevskii J. Math., 11 (2002), 3–6
Citation in format AMSBIB
\Bibitem{ArsKeh02}
\by M.~M.~Arslanov, N.~Kehayopulu
\paper A~note on minimal and maximal ideals of ordered semigroups
\jour Lobachevskii J. Math.
\yr 2002
\vol 11
\pages 3--6
\mathnet{http://mi.mathnet.ru/ljm113}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1946351}
\zmath{https://zbmath.org/?q=an:1015.06015}
Linking options:
  • https://www.mathnet.ru/eng/ljm113
  • https://www.mathnet.ru/eng/ljm/v11/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Lobachevskii Journal of Mathematics
    Statistics & downloads:
    Abstract page:463
    Full-text PDF :238
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024