Lobachevskii Journal of Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Lobachevskii J. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Lobachevskii Journal of Mathematics, 2003, Volume 13, Pages 81–85 (Mi ljm102)  

Submanifolds of an even-dimensional manifold structured by a $\mathcal T$-parallel connection

K. Matsumotoa, A. Mihaib, D. Naitzac

a Nagoya University
b Faculty of Mathematics and Computer Science, University of Bucharest
c Istituto di Matematica, Facoltà di Economia, Università di Messina
References:
Abstract: Even-dimensional manifolds $N$ structured by a $\mathcal T$-parallel connection have been defined and studied in [DR], [MRV]. In the present paper, we assume that $N$ carries a $(1,1)$-tensor field $J$ of square ${-1}$ and we consider an immersion $x : M\to N$. It is proved that any such $M$ is a CR-product [B] and one may decompose $M$ as $M=M_D\times M_{D^\perp}$, where $M_D$ is an invariant submanifold of $M$ and $M_{D\perp}$ is an antiinvariant submanifold of $M$. Some other properties regarding the immersion $x:M\to N$ are discussed.
Submitted by: B. N. Shapukov
Received: 15.05.2003
Bibliographic databases:
Language: English
Citation: K. Matsumoto, A. Mihai, D. Naitza, “Submanifolds of an even-dimensional manifold structured by a $\mathcal T$-parallel connection”, Lobachevskii J. Math., 13 (2003), 81–85
Citation in format AMSBIB
\Bibitem{MatMihNai03}
\by K.~Matsumoto, A.~Mihai, D.~Naitza
\paper Submanifolds of an even-dimensional manifold structured by a~$\mathcal T$-parallel connection
\jour Lobachevskii J. Math.
\yr 2003
\vol 13
\pages 81--85
\mathnet{http://mi.mathnet.ru/ljm102}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025562}
\zmath{https://zbmath.org/?q=an:1049.53014}
Linking options:
  • https://www.mathnet.ru/eng/ljm102
  • https://www.mathnet.ru/eng/ljm/v13/p81
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Lobachevskii Journal of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025