Trudy Geometricheskogo Seminara
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Geom. Semin.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Geometricheskogo Seminara, 2003, Volume 24, Pages 99–106 (Mi kutgs33)  

This article is cited in 3 scientific papers (total in 3 papers)

Geodesies with random curvature on Riemannian and pseudo-Riemannian manifolds

V. G. Lamburt, È. R. Rozendorn, D. D. Sokolov, V. N. Tutubalin

M. V. Lomonosov Moscow State University
Full-text PDF (821 kB) Citations (3)
Abstract: We introduce a notion of renewing geodesic whose curvature is a random process. We demonstrate that the norm of Jacobi field along this geodesic line is of exponential growth, and that there exist infinitely many conjugate points with probability 1. Also we find the upper bound for the average distance between conjugate points.
Language: Russian
Citation: V. G. Lamburt, È. R. Rozendorn, D. D. Sokolov, V. N. Tutubalin, “Geodesies with random curvature on Riemannian and pseudo-Riemannian manifolds”, Tr. Geom. Semin., 24, Kazan Mathematical Society, Kazan, 2003, 99–106
Citation in format AMSBIB
\Bibitem{LamRozSok03}
\by V.~G.~Lamburt, \`E.~R.~Rozendorn, D.~D.~Sokolov, V.~N.~Tutubalin
\paper Geodesies with random curvature on Riemannian and pseudo-Riemannian manifolds
\serial Tr. Geom. Semin.
\yr 2003
\vol 24
\pages 99--106
\publ Kazan Mathematical Society
\publaddr Kazan
\mathnet{http://mi.mathnet.ru/kutgs33}
Linking options:
  • https://www.mathnet.ru/eng/kutgs33
  • https://www.mathnet.ru/eng/kutgs/v24/p99
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:468
    Full-text PDF :169
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024