Zhurnal Tekhnicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zhurnal Tekhnicheskoi Fiziki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Tekhnicheskoi Fiziki, 2016, Volume 86, Issue 4, Pages 10–20 (Mi jtf6572)  

This article is cited in 3 scientific papers (total in 3 papers)

Theoretical and Mathematical Physics

Recurrence procedure for calculating kernels of the nonlinear collision integral of the Boltzmann equation

Ë. À. Bakaleynikova, E. Yu. Flegontovaa, A. I. Endera, I. A. Enderb

a Ioffe Institute, St. Petersburg
b Saint Petersburg State University
Full-text PDF (172 kB) Citations (3)
Abstract: A recurrence procedure for a sequential construction of kernels $G^l_{l_1,l_2}(c,c_{1},c_{2})$ appearing upon the expansion of a nonlinear collision integral of the Boltzmann equation in spherical harmonics is developed. The starting kernel for this procedure is kernel $G^{0}_{0,0}(c,c_{1},c_{2})$ of the collision integral for the distribution function isotropic with respect to the velocities. Using the recurrence procedure, a set of kernels $G^{+l}_{l_1,l_2}(c,c_{1},c_{2})$ for a gas consisting of hard spheres and Maxwellian molecules is constructed. It is shown that the resultant kernels exhibit similarity and symmetry properties and satisfy the relations following from the conservation laws.
Keywords: Technical Physic, Boltzmann Equation, Spherical Harmonic, Hard Sphere, Inverse Operator.
Received: 16.09.2015
English version:
Technical Physics, 2016, Volume 61, Issue 4, Pages 486–497
DOI: https://doi.org/10.1134/S1063784216040071
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Ë. À. Bakaleynikov, E. Yu. Flegontova, A. I. Ender, I. A. Ender, “Recurrence procedure for calculating kernels of the nonlinear collision integral of the Boltzmann equation”, Zhurnal Tekhnicheskoi Fiziki, 86:4 (2016), 10–20; Tech. Phys., 61:4 (2016), 486–497
Citation in format AMSBIB
\Bibitem{BakFleEnd16}
\by Ë.~À.~Bakaleynikov, E.~Yu.~Flegontova, A.~I.~Ender, I.~A.~Ender
\paper Recurrence procedure for calculating kernels of the nonlinear collision integral of the Boltzmann equation
\jour Zhurnal Tekhnicheskoi Fiziki
\yr 2016
\vol 86
\issue 4
\pages 10--20
\mathnet{http://mi.mathnet.ru/jtf6572}
\elib{https://elibrary.ru/item.asp?id=25669351}
\transl
\jour Tech. Phys.
\yr 2016
\vol 61
\issue 4
\pages 486--497
\crossref{https://doi.org/10.1134/S1063784216040071}
Linking options:
  • https://www.mathnet.ru/eng/jtf6572
  • https://www.mathnet.ru/eng/jtf/v86/i4/p10
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Zhurnal Tekhnicheskoi Fiziki Zhurnal Tekhnicheskoi Fiziki
    Statistics & downloads:
    Abstract page:43
    Full-text PDF :8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024