|
This article is cited in 1 scientific paper (total in 1 paper)
Theoretical and Mathematical Physics
Mathematical simulation of complex formation of protein molecules allowing for their domain structure
T. V. Koshlana, K. G. Kulikovb a Saint Petersburg State University
b Peter the Great St. Petersburg Polytechnic University
Abstract:
A physical model of the interactions between protein molecules has been presented and an analysis of their propensity to form complex biological complexes has been performed. The reactivities of proteins have been studied using electrostatics methods based on the example of the histone chaperone Nap1 and histones H2A and H2B. The capability of proteins to form stable biological complexes that allow for different segments of amino acid sequences has been analyzed. The ability of protein molecules to form compounds has been considered by calculating matrices of electrostatic potential energy of amino acid residues constituting the polypeptide chain. The method of block matrices has been used in the analysis of the ability of protein molecules to form complex biological compounds.
Received: 21.09.2016
Citation:
T. V. Koshlan, K. G. Kulikov, “Mathematical simulation of complex formation of protein molecules allowing for their domain structure”, Zhurnal Tekhnicheskoi Fiziki, 87:4 (2017), 489–497; Tech. Phys., 62:4 (2017), 509–516
Linking options:
https://www.mathnet.ru/eng/jtf6251 https://www.mathnet.ru/eng/jtf/v87/i4/p489
|
Statistics & downloads: |
Abstract page: | 51 | Full-text PDF : | 16 |
|