Zhurnal Tekhnicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zhurnal Tekhnicheskoi Fiziki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Tekhnicheskoi Fiziki, 2020, Volume 90, Issue 10, Pages 1644–1649
DOI: https://doi.org/10.21883/JTF.2020.10.49794.42-20
(Mi jtf5175)
 

This article is cited in 1 scientific paper (total in 1 paper)

III International Conference Physics -- Life Sciences
Polymer materials for biomedicine

Composite matrices based on copolyamide and polypyrrole for tissue engineering

N. V. Smirnovaab, I. Yu. Sapurinaab, M. A. Shishovab, K. A. Kolbea, E. M. Ivan'kovaab, V. V. Matryenichevb, V. E. Yudinab

a Peter the Great St. Petersburg Polytechnic University
b Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg
Full-text PDF (833 kB) Citations (1)
Abstract: We have demonstrated the possibility of application of electroconducting polymers for fabricating bioactive matrices for tissue engineering. Polypyrrole is most promising among such polymers in the context of its biomedical applications. Polypyrrole possesses a number of properties that make it an adequate basis for preparing “smart” bioactive materials. To obtain the best mechanical properties of composite matrices, we used aliphatic copolyamide. The matrices obtained from the copolyamide solution had the structure of thin films, as well as fibrous nonwoven mats prepared by electroformation. Copolyamide films were modified with polypyrrole using polymerization by oxidation with the formation of composite matrices. The samples obtained in this way exhibited service properties acceptable for applications and an electric conductivity level sufficient for cell technologies. In the in vitro experiments, the copolyamide- and polypyrrole-based matrices support the viability, adhesion, and proliferation of human dermal fibroblasts.
Keywords: conducting polymers, polypyrrole, matrix, tissue engineering.
Funding agency Grant number
Russian Science Foundation 19-73-30003
The research reported in this paper was supported by the Russian Science Foundation, project no. 19-73-30003.
Received: 04.02.2020
Revised: 04.02.2020
Accepted: 17.02.2020
English version:
Technical Physics, 2020, Volume 65, Issue 10, Pages 1574–1579
DOI: https://doi.org/10.1134/S1063784220100217
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. V. Smirnova, I. Yu. Sapurina, M. A. Shishov, K. A. Kolbe, E. M. Ivan'kova, V. V. Matryenichev, V. E. Yudin, “Composite matrices based on copolyamide and polypyrrole for tissue engineering”, Zhurnal Tekhnicheskoi Fiziki, 90:10 (2020), 1644–1649; Tech. Phys., 65:10 (2020), 1574–1579
Citation in format AMSBIB
\Bibitem{SmiSapShi20}
\by N.~V.~Smirnova, I.~Yu.~Sapurina, M.~A.~Shishov, K.~A.~Kolbe, E.~M.~Ivan'kova, V.~V.~Matryenichev, V.~E.~Yudin
\paper Composite matrices based on copolyamide and polypyrrole for tissue engineering
\jour Zhurnal Tekhnicheskoi Fiziki
\yr 2020
\vol 90
\issue 10
\pages 1644--1649
\mathnet{http://mi.mathnet.ru/jtf5175}
\crossref{https://doi.org/10.21883/JTF.2020.10.49794.42-20}
\elib{https://elibrary.ru/item.asp?id=44154117}
\transl
\jour Tech. Phys.
\yr 2020
\vol 65
\issue 10
\pages 1574--1579
\crossref{https://doi.org/10.1134/S1063784220100217}
Linking options:
  • https://www.mathnet.ru/eng/jtf5175
  • https://www.mathnet.ru/eng/jtf/v90/i10/p1644
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Zhurnal Tekhnicheskoi Fiziki Zhurnal Tekhnicheskoi Fiziki
    Statistics & downloads:
    Abstract page:54
    Full-text PDF :16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024