Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2009, Volume 2, Issue 4, Pages 506–516 (Mi jsfu97)  

On the Cauchy Problem for the Dolbeault Complex in the Sobolev spaces

Dmitry P. Fedchenko

Institute of Mathematics, Siberian Federal University, Krasnoyarsk, Russia
References:
Abstract: Let $D$ be a bounded domain in $\mathbb C^n$ ($n>1$) with a twice smooth boundary $\partial D$. We describe necessary and sufficient Cauchy problem's solvability conditions for the Dolbeault complex in the space of differential forms of bidegree $(0,q)$, $0<q<n$, with coefficients from the Sobolev space $H^1(D)$ in the domain $D$.
Keywords: Cauchy problem, Cauchy–Riemann operator, Dolbeault complex.
Received: 18.09.2009
Received in revised form: 25.10.2009
Accepted: 10.11.2009
Bibliographic databases:
UDC: 517.55
Language: Russian
Citation: Dmitry P. Fedchenko, “On the Cauchy Problem for the Dolbeault Complex in the Sobolev spaces”, J. Sib. Fed. Univ. Math. Phys., 2:4 (2009), 506–516
Citation in format AMSBIB
\Bibitem{Fed09}
\by Dmitry~P.~Fedchenko
\paper On the Cauchy Problem for the Dolbeault Complex in the Sobolev spaces
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2009
\vol 2
\issue 4
\pages 506--516
\mathnet{http://mi.mathnet.ru/jsfu97}
\elib{https://elibrary.ru/item.asp?id=12956413}
Linking options:
  • https://www.mathnet.ru/eng/jsfu97
  • https://www.mathnet.ru/eng/jsfu/v2/i4/p506
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:417
    Full-text PDF :107
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024