Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2021, Volume 14, Issue 4, Pages 528–542
DOI: https://doi.org/10.17516/1997-1397-2021-14-4-528-542
(Mi jsfu938)
 

This article is cited in 1 scientific paper (total in 1 paper)

Inverse problems of finding the lowest coefficient in the elliptic equation

Alexander I. Kozhanovab, Tatyana N. Shipinac

a Sobolev Institute of Mathematics, Novosibirsk, Russian Federation
b Novosibirsk State University, Novosibirsk, Russian Federation
c Siberian Federal University, Krasnoyarsk, Russian Federation
Full-text PDF (155 kB) Citations (1)
References:
Abstract: The article is devoted to the study of problems of finding the non-negative coefficient $q(t)$ in the elliptic equation
$$u_{tt}+a^2\Delta u-q(t)u=f(x,t)$$
($x=(x_1,\ldots,x_n)\in\Omega\subset \mathbb{R}^n$, $t\in (0,T)$, $0<T<+\infty$, $\Delta$ — operator Laplace on $x_1, \ldots, x_n$). These problems contain the usual boundary conditions and additional condition ( spatial integral overdetermination condition or boundary integral overdetermination condition). The theorems of existence and uniqueness are proved.
Keywords: elliptic equation, unknown coefficient, spatial integral condition, boundary integral condition, existence, uniqueness.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00620
The work is supported by the Russian Foundation basic research (grant 18-01-00620).
Received: 30.12.2020
Received in revised form: 14.03.2021
Bibliographic databases:
Document Type: Article
UDC: 517.946
Language: English
Citation: Alexander I. Kozhanov, Tatyana N. Shipina, “Inverse problems of finding the lowest coefficient in the elliptic equation”, J. Sib. Fed. Univ. Math. Phys., 14:4 (2021), 528–542
Citation in format AMSBIB
\Bibitem{KozShi21}
\by Alexander~I.~Kozhanov, Tatyana~N.~Shipina
\paper Inverse problems of finding the lowest coefficient in the elliptic equation
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2021
\vol 14
\issue 4
\pages 528--542
\mathnet{http://mi.mathnet.ru/jsfu938}
\crossref{https://doi.org/10.17516/1997-1397-2021-14-4-528-542}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000684603900014}
Linking options:
  • https://www.mathnet.ru/eng/jsfu938
  • https://www.mathnet.ru/eng/jsfu/v14/i4/p528
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:157
    Full-text PDF :66
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024