Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2020, Volume 13, Issue 4, Pages 503–514
DOI: https://doi.org/10.17516/1997-1397-2020-13-4-503-514
(Mi jsfu858)
 

This article is cited in 1 scientific paper (total in 1 paper)

On new decomposition theorems in some analytic function spaces in bounded pseudoconvex domains

Romi F. Shamoyan, Elena B. Tomashevskaya

Bryansk State University, Bryansk, Russian Federation
Full-text PDF (156 kB) Citations (1)
References:
Abstract: We provide new sharp decomposition theorems for multifunctional Bergman spaces in the unit ball and bounded pseudoconvex domains with smooth boundary expanding known results from the unit ball.
Namely we prove that $ \prod \limits_{j=1}^{m}||f_{j}|| _{X_{j}} \asymp ||f_{1} \dots f_{m}||_{A_{\alpha}^{p}}$ for various $(X_{j})$ spaces of analytic functions in bounded pseudoconvex domains with smooth boundary where $f, f_{j}, j=1,\dots, m$ are analytic functions and where $A_{\alpha}^{p}, 0 <p< \infty, \alpha>-1$ is a Bergman space. This in particular also extend in various directions a known theorem on atomic decomposition of Bergman $A^{p}_{\alpha}$ spaces.
Keywords: pseudoconvex domains, unit ball, Bergman spaces, decomposition theorems, Hardy type spaces.
Received: 06.04.2020
Received in revised form: 23.05.2020
Accepted: 06.07.2020
Bibliographic databases:
Document Type: Article
UDC: 517.55+517.33
Language: English
Citation: Romi F. Shamoyan, Elena B. Tomashevskaya, “On new decomposition theorems in some analytic function spaces in bounded pseudoconvex domains”, J. Sib. Fed. Univ. Math. Phys., 13:4 (2020), 503–514
Citation in format AMSBIB
\Bibitem{ShaTom20}
\by Romi~F.~Shamoyan, Elena~B.~Tomashevskaya
\paper On new decomposition theorems in some analytic function spaces in bounded pseudoconvex domains
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2020
\vol 13
\issue 4
\pages 503--514
\mathnet{http://mi.mathnet.ru/jsfu858}
\crossref{https://doi.org/10.17516/1997-1397-2020-13-4-503-514}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000557580600012}
Linking options:
  • https://www.mathnet.ru/eng/jsfu858
  • https://www.mathnet.ru/eng/jsfu/v13/i4/p503
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:118
    Full-text PDF :55
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024