Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2020, Volume 13, Issue 3, Pages 331–341
DOI: https://doi.org/10.17516/1997-1397-2020-13-3-331-341
(Mi jsfu842)
 

On construction of positive closed currents with prescribed Lelong numbers

Hedi Khedhiri

University of Monastir, Monastir, Tunisia
References:
Abstract: We establish that a sequence $(X_k)_{k\in\mathbb{N}}$ of analytic subsets of a domain $\Omega$ in $\mathbb{C}^n$, purely dimensioned, can be released as the family of upper-level sets for the Lelong numbers of some positive closed current. This holds whenever the sequence $(X_k)_{k\in\mathbb{N}}$ satisfies, for any compact subset $L$ of $\Omega$, the growth condition $\sum\limits_{k\in\mathbb{N}}C_k \hbox{mes}(X_k\cap L)<\infty$. More precisely, we built a positive closed current $\Theta$ of bidimension $(p,p)$ on $\Omega$, such that the generic Lelong number $m_{X_k}$ of $\Theta$ along each $X_k$ satisfies $m_{X_k}=C_k$. In particular, we prove the existence of a plurisubharmonic function $v$ on $\Omega$ such that, each $X_k$ is contained in the upper-level set $E_{C_k}(dd^cv)$.
Keywords: closed positive current, plurisubharmonic function, potential, analytic set, Lelong number.
Received: 06.01.2020
Received in revised form: 06.02.2020
Accepted: 09.03.2020
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: English
Citation: Hedi Khedhiri, “On construction of positive closed currents with prescribed Lelong numbers”, J. Sib. Fed. Univ. Math. Phys., 13:3 (2020), 331–341
Citation in format AMSBIB
\Bibitem{Khe20}
\by Hedi~Khedhiri
\paper On construction of positive closed currents with prescribed Lelong numbers
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2020
\vol 13
\issue 3
\pages 331--341
\mathnet{http://mi.mathnet.ru/jsfu842}
\crossref{https://doi.org/10.17516/1997-1397-2020-13-3-331-341}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000540327900007}
Linking options:
  • https://www.mathnet.ru/eng/jsfu842
  • https://www.mathnet.ru/eng/jsfu/v13/i3/p331
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:98
    Full-text PDF :30
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024