Abstract:
In this paper the conditions for the law of temperature behavior on a solid cylinder wall describes, under which the solution of a linear conjugate inverse initial-boundary value problem describing a two-layer axisymmetric creeping motion of viscous heat-conducting fluids tends to zero exponentially with increases of time.
Keywords:
the conjugate nonlinear inverse problem, interface, a crawling motion.
Received: 04.03.2019 Received in revised form: 10.11.2019 Accepted: 08.12.2019
Bibliographic databases:
Document Type:
Article
UDC:
532.5.013.4
Language: English
Citation:
Victor K. Andreev, Evgeniy P. Magdenko, “On the asymptotic behavior of the conjugate problem describing a creeping axisymmetric thermocapillary motion”, J. Sib. Fed. Univ. Math. Phys., 13:1 (2020), 26–36
\Bibitem{AndMag20}
\by Victor~K.~Andreev, Evgeniy~P.~Magdenko
\paper On the asymptotic behavior of the conjugate problem describing a creeping axisymmetric thermocapillary motion
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2020
\vol 13
\issue 1
\pages 26--36
\mathnet{http://mi.mathnet.ru/jsfu815}
\crossref{https://doi.org/10.17516/1997-1397-2020-13-1-26-36}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000514843200002}
Linking options:
https://www.mathnet.ru/eng/jsfu815
https://www.mathnet.ru/eng/jsfu/v13/i1/p26
This publication is cited in the following 2 articles:
E. Lemeshkova, V. Andreev, “On the asymptotic behavior of inverse problems for parabolic equation”, J. Elliptic Parabol. Equat., 7:2, SI (2021), 905–921
V. K. Andreev, I. V. Stepanova, “Inverse Problem For Source Function in Parabolic Equation At Neumann Boundary Conditions”, J. Sib. Fed. Univ.-Math. Phys., 14:4 (2021), 445–451