Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2019, Volume 12, Issue 6, Pages 728–735
DOI: https://doi.org/10.17516/1997-1397-2019-12-6-728-735
(Mi jsfu803)
 

This article is cited in 1 scientific paper (total in 1 paper)

Elementary nets (carpets) over a discrete valuation ring

Vladimir A. Koibaevab

a North-Ossetian State University, Vatutina, 44-46, Vladikavkaz, 362025, Russia
b SMI VSC RAS, Markusa, 22, Vladikavkaz, 362027, Russia
Full-text PDF (120 kB) Citations (1)
References:
Abstract: Elementary net (carpet) $\sigma = (\sigma_{ij})$ is called closed (admissible) if the elementary net (carpet) group $E(\sigma)$ does not contain a new elementary transvections. The work is related to the question of V. M. Levchuk 15.46 from the Kourovka notebook( closedness (admissibility) of the elementary net (carpet)over a field). Let $R$ be a discrete valuation ring, $K$ be the field of fractions of $R$, $\sigma = (\sigma_{ij})$ be an elementary net of order $n$ over $R$, $\omega=(\omega_{ij})$ be a derivative net for $\sigma$, and $\omega_{ij}$ is ideals of the ring $R$. It is proved that if $K$ is a field of odd characteristic, then for the closedness (admissibility) of the net $\sigma$, the closedness (admissibility) of each pair $(\sigma_{ij}, \sigma_{ji})$ is sufficient for all $i\neq j$.
Keywords: nets, carpets, elementary net, closed net, derivative net, elementary net group, transvections, discrete valuation ring.
Received: 24.06.2019
Received in revised form: 16.08.2019
Accepted: 20.09.2019
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: English
Citation: Vladimir A. Koibaev, “Elementary nets (carpets) over a discrete valuation ring”, J. Sib. Fed. Univ. Math. Phys., 12:6 (2019), 728–735
Citation in format AMSBIB
\Bibitem{Koi19}
\by Vladimir~A.~Koibaev
\paper Elementary nets (carpets) over a discrete valuation ring
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2019
\vol 12
\issue 6
\pages 728--735
\mathnet{http://mi.mathnet.ru/jsfu803}
\crossref{https://doi.org/10.17516/1997-1397-2019-12-6-728-735}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000501590600009}
Linking options:
  • https://www.mathnet.ru/eng/jsfu803
  • https://www.mathnet.ru/eng/jsfu/v12/i6/p728
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024