Abstract:
Definition of the discrete primitive function is introduced in the problem of summation over simplex lattice points. The discrete analog of the Newton–Leibniz formula is found.
Keywords:
summation of functions, discrete primitive function, discrete analog of the Newton–Leibniz formula.
The work was supported by RFFI (grant 18-51-41011 Uzb_t) and by RFBR (research project 18-31-00232).
Received: 18.01.2019 Received in revised form: 25.02.2019 Accepted: 20.04.2019
Bibliographic databases:
Document Type:
Article
UDC:517.55+517.962.26
Language: English
Citation:
Evgeniy K. Leinartas, Olga A. Shishkina, “The discrete analog of the Newton–Leibniz formula in the problem of summation over simplex lattice points”, J. Sib. Fed. Univ. Math. Phys., 12:4 (2019), 503–508
\Bibitem{LeiShi19}
\by Evgeniy~K.~Leinartas, Olga~A.~Shishkina
\paper The discrete analog of the Newton--Leibniz formula in the problem of summation over simplex lattice points
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2019
\vol 12
\issue 4
\pages 503--508
\mathnet{http://mi.mathnet.ru/jsfu779}
\crossref{https://doi.org/10.17516/1997-1397-2019-12-4-503-508}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000483323900013}
Linking options:
https://www.mathnet.ru/eng/jsfu779
https://www.mathnet.ru/eng/jsfu/v12/i4/p503
This publication is cited in the following 11 articles:
Jiaxin Mu, Takao Komatsu, “p-Numerical Semigroups of Triples from the Three-Term Recurrence Relations”, Axioms, 13:9 (2024), 608
Dionisio Peralta, Yamilet Quintana, “Mixed-type hypergeometric Bernoulli-Gegenbauer polynomials: some properties”, Communications in Applied and Industrial Mathematics, 15:1 (2024), 123
Nadeem Rao, Mohammad Farid, Rehan Ali, “A Study of Szász–Durremeyer-Type Operators Involving Adjoint Bernoulli Polynomials”, Mathematics, 12:23 (2024), 3645
Andrey A. Grigoriev, Evgeniy K. Leinartas, Alexander P. Lyapin, “Summation of functions and polynomial solutions to a multidimensional difference equation”, Zhurn. SFU. Ser. Matem. i fiz., 16:2 (2023), 153–161
Juan Hernández, Dionisio Peralta, Yamilet Quintana, “A Look at Generalized Degenerate Bernoulli and Euler Matrices”, Mathematics, 11:12 (2023), 2731
Diego Caratelli, Pierpaolo Natalini, Paolo Emilio Ricci, “Fractional Bernoulli and Euler Numbers and Related Fractional Polynomials—A Symmetry in Number Theory”, Symmetry, 15:10 (2023), 1900
Mohra Zayed, Shahid Ahmad Wani, Yamilet Quintana, “Properties of Multivariate Hermite Polynomials in Correlation with Frobenius–Euler Polynomials”, Mathematics, 11:16 (2023), 3439
E. K. Leinartas, M. E. Petrochenko, “Mnogomernye analogi formuly summirovaniya Eilera—Maklorena i preobrazovanie Borelya stepennykh ryadov”, Sib. elektron. matem. izv., 19:1 (2022), 91–100
G. A. Tyulepberdinova, Zh. O. Oralbekova, G. G. Gaziz, B. A. Maxutova, S. A. Baitenova, “Comparative analysis of numerical methods of the solution of a one-dimensional inverse problem of acoustics”, Period. Tche Quim., 17:34 (2020), 321–334