Abstract:
We introduce a local linear nonparametric estimation for the generalized regression function of a scalar response variable given a random variable taking values in a semi metric space. We establish a rate of uniform consistency for the proposed estimators. Then, based on a real data set we illustrate the performance of a particular studied estimator with respect to other known estimators.
Keywords:
locally modelled regression, nonparametric estimation, rate of convergence, uniform almost complete convergence.
Received: 04.12.2018 Received in revised form: 28.01.2019 Accepted: 06.03.2019
Bibliographic databases:
Document Type:
Article
UDC:519.2
Language: English
Citation:
Sara Leulmi, Fatiha Messaci, “A class of local linear estimators with functional data”, J. Sib. Fed. Univ. Math. Phys., 12:3 (2019), 379–391
\Bibitem{LeuMes19}
\by Sara~Leulmi, Fatiha~Messaci
\paper A class of local linear estimators with functional data
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2019
\vol 12
\issue 3
\pages 379--391
\mathnet{http://mi.mathnet.ru/jsfu762}
\crossref{https://doi.org/10.17516/1997-1397-2019-12-3-379-391}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000471028500013}
Linking options:
https://www.mathnet.ru/eng/jsfu762
https://www.mathnet.ru/eng/jsfu/v12/i3/p379
This publication is cited in the following 4 articles:
Amina Kharoua, Kenza Assia Mezhoud, Zaher Mohdeb, “On Asymptotic Properties of Local Linear Regression Predictor”, Oper. Res. Forum, 5:4 (2024)
Sara L., “Nonparametric Local Linear Regression Estimation For Censored Data and Functional Regressors”, J. Korean Stat. Soc., 51:1 (2022), 25–46
Farid Leulmi, Sara Leulmi, Soumia Kharfouchi, “On the nonparametric estimation of the functional regression based on censored data under strong mixing condition”, Zhurn. SFU. Ser. Matem. i fiz., 15:4 (2022), 523–536
Halima Boudada, Sara Leulmi, Soumia Kharfouch, “Rate of the almost sure convergence of a generalized regression estimate based on truncated and functional data”, Zhurn. SFU. Ser. Matem. i fiz., 13:4 (2020), 480–491