Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2019, Volume 12, Issue 2, Pages 145–159
DOI: https://doi.org/10.17516/1997-1397-2019-12-2-145-159
(Mi jsfu743)
 

This article is cited in 1 scientific paper (total in 1 paper)

Limit cycles for a class of polynomial differential systems via averaging theory

Ahmed Bendjeddoua, Aziza Berbacheb, Abdelkrim Kinaa

a Department of Mathematics, University of Setif, 19 000, Algeria
b Department of Mathematics, University of Bordj Bou Arréridj, 34265, Algeria
Full-text PDF (147 kB) Citations (1)
References:
Abstract: In this paper, we consider the limit cycles of a class of polynomial differential systems of the form
\begin{equation*} \left\{ \begin{array}{l} \dot{x}=y-\varepsilon (g_{11}\left( x\right) y^{2\alpha +1}+f_{11}\left( x\right) y^{2\alpha })-\varepsilon ^{2}(g_{12}\left( x\right) y^{2\alpha +1}+f_{12}\left( x\right) y^{2\alpha }) ,\\ \dot{y}=-x-\varepsilon (g_{21}\left( x\right) y^{2\alpha +1}+f_{21}\left( x\right) y^{2\alpha })-\varepsilon ^{2}(g_{22}\left( x\right) y^{2\alpha +1}+f_{22}\left( x\right) y^{2\alpha }), \end{array} \right. \end{equation*}
where $m,n,k,l$ and $\alpha $ are positive integers, $g_{1\kappa }$, $ g_{2\kappa },f_{1\kappa }$ and $f_{2\kappa }$ have degree $n,m,l$ and $k$, respectively for each $\kappa =1,2$, and $\varepsilon $ is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center $\dot{x}=y,\, \dot{y}=-x$ using the averaging theory of first and second order.
Keywords: limit cycles, averaging theory, Liénard differential systems.
Received: 02.10.2018
Received in revised form: 13.12.2018
Accepted: 26.01.2019
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Citation: Ahmed Bendjeddou, Aziza Berbache, Abdelkrim Kina, “Limit cycles for a class of polynomial differential systems via averaging theory”, J. Sib. Fed. Univ. Math. Phys., 12:2 (2019), 145–159
Citation in format AMSBIB
\Bibitem{BenBerKin19}
\by Ahmed~Bendjeddou, Aziza~Berbache, Abdelkrim~Kina
\paper Limit cycles for a class of polynomial differential systems via averaging theory
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2019
\vol 12
\issue 2
\pages 145--159
\mathnet{http://mi.mathnet.ru/jsfu743}
\crossref{https://doi.org/10.17516/1997-1397-2019-12-2-145-159}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000467247000002}
Linking options:
  • https://www.mathnet.ru/eng/jsfu743
  • https://www.mathnet.ru/eng/jsfu/v12/i2/p145
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:208
    Full-text PDF :100
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024