Abstract:
We give an algorithm to obtain a transversality condition for one variation problem with a moving boundary when a functional contains derivatives of order nn of functions of one variable. A mathematical justification of the this approach is given.
Received: 14.09.2018 Received in revised form: 16.10.2018 Accepted: 20.11.2018
Bibliographic databases:
Document Type:
Article
UDC:517.97
Language: English
Citation:
Sergey O. Gladkov, “On a transversality condition for one variation problem with moving boundary”, J. Sib. Fed. Univ. Math. Phys., 12:1 (2019), 125–129
\Bibitem{Gla19}
\by Sergey~O.~Gladkov
\paper On a transversality condition for one variation problem with moving boundary
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2019
\vol 12
\issue 1
\pages 125--129
\mathnet{http://mi.mathnet.ru/jsfu733}
\crossref{https://doi.org/10.17516/1997-1397-2019-12-1-125-129}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000458446400013}
Linking options:
https://www.mathnet.ru/eng/jsfu733
https://www.mathnet.ru/eng/jsfu/v12/i1/p125
This publication is cited in the following 2 articles:
S. O. Gladkov, “Ob odnom klasse reshenii dvukhmernogo uravneniya Laplasa na trekhmernom mnogoobrazii”, Vladikavk. matem. zhurn., 26:2 (2024), 39–46
S. O. Gladkov, “On Some Class of Solutions to the Two-Dimensional Laplace Equation on a Three-Dimensional Manifold”, Sib Math J, 65:6 (2024), 1423