Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2019, Volume 12, Issue 1, Pages 36–50
DOI: https://doi.org/10.17516/1997-1397-2019-12-1-36-50
(Mi jsfu732)
 

Chaotic dynamics of a three-dimensional endomorphism

Hacene Gharouta, Nourredine Akrounea, Abelkadous Tahab, Daniele-Fournier Prunaretc

a Laboratoire des Mathématiques Appliquées, Faculté des Sciences Exactes, Université de Bejaia, Bejaia, 06000, Algerie
b INSA, University of Toulouse, 135 Avenue de Rangueil, Toulouse, 31077, France
c Laboratory of LAAS-CNRS, INSA, University of Toulouse, 7 Avenue du Colonel Roche, Toulouse, 31077, France
References:
Abstract: The present work describes the phases plane bifurcations of some attractors given by a noninvertible three-dimensional map. This study is conducted through the critical manifolds concepts, generalization of critical points and critical lines introduced by Gumowski and Mira [1, 2]. The phase plane shared within two open regions: the first (denoted $Z_{0}$) each point having no real preimage, and the second (denoted  $Z_{2}$) each point having two real preimages. The regions $Z_{0}$, $Z_{2}$ are separated by the critical manifolds, locus of points having two coincident preimages. This requires the visualization of critical manifolds in the three dimensional phases space. And this work also describes the passage of invariant or attractor curves towards weakly chaotic attractors then towards hyper-chaotic attractors via the contact bifurcation through the critical manifolds, which disappear after the contact bifurcation with the its attraction basin boundary.
Keywords: critical manifold, closed invariant curve, weakly chaos, chaos.
Received: 26.02.2018
Received in revised form: 09.07.2018
Accepted: 10.09.2018
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: English
Citation: Hacene Gharout, Nourredine Akroune, Abelkadous Taha, Daniele-Fournier Prunaret, “Chaotic dynamics of a three-dimensional endomorphism”, J. Sib. Fed. Univ. Math. Phys., 12:1 (2019), 36–50
Citation in format AMSBIB
\Bibitem{GhaAkrTah19}
\by Hacene~Gharout, Nourredine~Akroune, Abelkadous~Taha, Daniele-Fournier~Prunaret
\paper Chaotic dynamics of a three-dimensional endomorphism
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2019
\vol 12
\issue 1
\pages 36--50
\mathnet{http://mi.mathnet.ru/jsfu732}
\crossref{https://doi.org/10.17516/1997-1397-2019-12-1-36-50}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000458446400003}
Linking options:
  • https://www.mathnet.ru/eng/jsfu732
  • https://www.mathnet.ru/eng/jsfu/v12/i1/p36
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024