Processing math: 100%
Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2018, Volume 11, Issue 6, Pages 776–780
DOI: https://doi.org/10.17516/1997-1397-2018-11-6-776-780
(Mi jsfu726)
 

This article is cited in 3 scientific papers (total in 3 papers)

Jacobian conjecture for mappings of a special type in C2

Maria A. Stepanova

Faculty of Mathematics and Mechanics, Lomonosov Moscow State University, Leninskie Gory, GSP-2, Moscow, 119992, Russia
Full-text PDF (90 kB) Citations (3)
References:
Abstract: We show that a polynomial mapping of the type (xF[x+f(a(x)+b(y))],yG[y+g(c(x)+d(y))]), where (a,b,c,d,f,g,F,G) are polynomials with non-zero Jacobian is a composition of no more than 3 linear or triangular transformations. This result, however, leaves the possibility of existence of a counterexample of polynomial complexity two.
Keywords: analytical complexity.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation NSh-9110.2016.1
The research for this paper was supported by grant NSh-9110.2016.1 "Complex analysis and its applications".
Received: 22.12.2017
Received in revised form: 08.09.2018
Accepted: 04.10.2018
Bibliographic databases:
Document Type: Article
UDC: 517.55
Language: English
Citation: Maria A. Stepanova, “Jacobian conjecture for mappings of a special type in C2”, J. Sib. Fed. Univ. Math. Phys., 11:6 (2018), 776–780
Citation in format AMSBIB
\Bibitem{Ste18}
\by Maria~A.~Stepanova
\paper Jacobian conjecture for mappings of a special type in ${\mathbb C}^2$
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2018
\vol 11
\issue 6
\pages 776--780
\mathnet{http://mi.mathnet.ru/jsfu726}
\crossref{https://doi.org/10.17516/1997-1397-2018-11-6-776-780}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000452216700013}
Linking options:
  • https://www.mathnet.ru/eng/jsfu726
  • https://www.mathnet.ru/eng/jsfu/v11/i6/p776
  • This publication is cited in the following 3 articles:
    1. T. M. SADYKOV, “A PACKAGE OF PROCEDURES AND FUNCTIONS FOR CONSTRUCTIONS AND INVERSION OF ANALYTIC MAPPINGS WITH UNIT JACOBIAN”, Programmirovanie, 2023, no. 1, 61  crossref
    2. Timur Sadykov, “Parameterizing and inverting analytic mappings with unit Jacobian”, Mosc. Math. J., 23:3 (2023), 369–400  mathnet
    3. V. A. Krasikov, “Analytic complexity of hypergeometric functions satisfying systems with holonomic rank two”, Computer Algebra in Scientific Computing (Casc 2019), Lecture Notes in Computer Science, 11661, eds. M. England, W. Koepf, T. Sadykov, W. Seiler, E. Vorozhtsov, Springer, 2019, 330–342  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:207
    Full-text PDF :88
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025