Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2018, Volume 11, Issue 6, Pages 670–679
DOI: https://doi.org/10.17516/1997-1397-2018-11-6-670-679
(Mi jsfu712)
 

This article is cited in 1 scientific paper (total in 1 paper)

Singular points of complex algebraic hypersurfaces

Irina A. Antipovaa, Evgeny N. Mikhalkinb, Avgust K. Tsikhb

a Institute of Space and Information Technologies, Siberian Federal University, Kirensky, 26, Krasnoyarsk, 660074, Russia
b Institute of Mathematics and Computer Science, Siberian Federal University, Svobodny, 79, Krasnoyarsk, 660041, Russia
Full-text PDF (130 kB) Citations (1)
References:
Abstract: We consider a complex hypersurface $V$ given by an algebraic equation in $k$ unknowns, where the set $ A\subset {\mathbb Z}^k $ of monomial exponents is fixed, and all the coefficients are variable. In other words, we consider a family of hypersurfaces in $ ({\mathbb C \setminus 0}) ^ {k} $ parametrized by its coefficients $a =(a_{\alpha})_{\alpha \in A} \in {\mathbb C} ^{A} $. We prove that when $A$ generates the lattice $\mathbb Z^k$ as a group, then over the set of regular points $a$ in the $A$-discriminantal set, the singular points of $V$ admit a rational expression in $a$.
Keywords: singular point, $A$-discriminant, logarithmic Gauss map.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.2604.2017/PCh
14.Y26.31.0006
Russian Foundation for Basic Research 18-51-41011_Uzb_t
The first two authors were supported by the grant of Ministry of Education and Science of the Russian Federation (no. 1.2604.2017/PCh). The third author was supported by the grant of the Russian Federation Government for scientific research under the supervision of leading scientists at Siberian Federal University (no. 14.Y26.31.0006) and grant RFBR, no. 18-51-41011 Uzb.
Received: 03.09.2018
Received in revised form: 22.10.2018
Accepted: 28.10.2018
Bibliographic databases:
Document Type: Article
UDC: 517.55
Language: English
Citation: Irina A. Antipova, Evgeny N. Mikhalkin, Avgust K. Tsikh, “Singular points of complex algebraic hypersurfaces”, J. Sib. Fed. Univ. Math. Phys., 11:6 (2018), 670–679
Citation in format AMSBIB
\Bibitem{AntMikTsi18}
\by Irina~A.~Antipova, Evgeny~N.~Mikhalkin, Avgust~K.~Tsikh
\paper Singular points of complex algebraic hypersurfaces
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2018
\vol 11
\issue 6
\pages 670--679
\mathnet{http://mi.mathnet.ru/jsfu712}
\crossref{https://doi.org/10.17516/1997-1397-2018-11-6-670-679}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000452216700002}
Linking options:
  • https://www.mathnet.ru/eng/jsfu712
  • https://www.mathnet.ru/eng/jsfu/v11/i6/p670
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:303
    Full-text PDF :122
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024