Abstract:
Uniform strong laws of large numbers and the central limit theorem for special sequential empirical process of independence for a certain class of measurable functions are considered in the paper.
Received: 03.01.2018 Received in revised form: 05.06.2018 Accepted: 20.07.2018
Bibliographic databases:
Document Type:
Article
UDC:519.24
Language: English
Citation:
Abdurahim A. Abdushukurov, Leyla R. Kakadjanova, “Sequential empirical process of independence”, J. Sib. Fed. Univ. Math. Phys., 11:5 (2018), 634–643
\Bibitem{AbdKak18}
\by Abdurahim~A.~Abdushukurov, Leyla~R.~Kakadjanova
\paper Sequential empirical process of independence
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2018
\vol 11
\issue 5
\pages 634--643
\mathnet{http://mi.mathnet.ru/jsfu697}
\crossref{https://doi.org/10.17516/1997-1397-2018-11-5-634-643}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000447374900012}
Linking options:
https://www.mathnet.ru/eng/jsfu697
https://www.mathnet.ru/eng/jsfu/v11/i5/p634
This publication is cited in the following 2 articles:
Abduraxim A. Abdushukurov, Farkhad A. Abdikalikov, “On special empirical processes of independence in presence of covariates”, Zhurn. SFU. Ser. Matem. i fiz., 16:1 (2023), 66–75
A. A. Abdushukurov, “Special empirical processes of independence indexed by classes of measurable functions”, Zavod. lab., Diagn. mater., 87:5 (2021), 76