Abstract:
The temperature dependences of electrical conductivity and thermopower of tungsten disulfide and tungsten diselenide have been investigated in this paper. These materials have the low value of electrical conductivity. The main idea of this paper is the increase of electrical conductivity for obtaining high thermoelectric efficiency. Niobium have served as an acceptor impurity. It has been revealed that the replacements of metal atoms have increased of electrical conductivity of W$_{0.85}$Nb$_{0.15}$Se$_2$ by $4$ order of magnitude. While the thermopower has decreased with increasing of impurity concentration. The thermoelectric power factor has been calculated for materials. The figure of merit $ZT$ of the best composition W$_{0.95}$Nb$_{0.05}$Se$_2$ has been estimated and has had a value of 0.02 at room temperature.
Keywords:
thermopower, tungsten disulfide, tungsten diselenide, power factor.
The study was supported by the Russian Science Foundation (grant 14-13-00674).
Received: 12.05.2017 Received in revised form: 10.11.2017 Accepted: 20.04.2018
Bibliographic databases:
Document Type:
Article
UDC:
621.362
Language: English
Citation:
Galina E. Yakovleva, Anatoly I. Romanenko, Alexander S. Berdinsky, Vitalii A. Kuznetsov, Alexandra Yu. Ledneva, Vladimir E. Fedorov, “The research of temperature dependences of electrical conductivity and thermopower of WS$_2$ and WSe$_2$ with partial replacement of W on Nb”, J. Sib. Fed. Univ. Math. Phys., 11:4 (2018), 459–464
\Bibitem{YakRomBer18}
\by Galina~E.~Yakovleva, Anatoly~I.~Romanenko, Alexander~S.~Berdinsky, Vitalii~A.~Kuznetsov, Alexandra~Yu.~Ledneva, Vladimir~E.~Fedorov
\paper The research of temperature dependences of electrical conductivity and thermopower of WS$_2$ and WSe$_2$ with partial replacement of W on Nb
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2018
\vol 11
\issue 4
\pages 459--464
\mathnet{http://mi.mathnet.ru/jsfu694}
\crossref{https://doi.org/10.17516/1997-1397-2018-11-4-459-464}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000442257900007}
Linking options:
https://www.mathnet.ru/eng/jsfu694
https://www.mathnet.ru/eng/jsfu/v11/i4/p459
This publication is cited in the following 13 articles:
Jyoti Gupta, Dhana Sai Shree Kandkuri, Sunita Rattan, “Rapid chemiresistive detection of p-nitrophenol through Porphyrin-functionalized 2D materials: a step toward environmental monitoring”, J Mater Sci, 59:8 (2024), 3689
Razia Khan Sharme, Manuel Quijada, Mauricio Terrones, Mukti M. Rana, “Thin Conducting Films: Preparation Methods, Optical and Electrical Properties, and Emerging Trends, Challenges, and Opportunities”, Materials, 17:18 (2024), 4559
Faruk Özel, Emre Arkan, Halime Coskun, İlyas Deveci, Murat Y{\i}ld{\i}r{\i}m, Mehmet Y{\i}ld{\i}r{\i}m, İkram Orak, Mehmet Okan Erdal, Adem Sar{\i}lmaz, Tugrul Talha Ersöz, Adem Koçyiğit, Abdulkerim Karabulut, Abdurrahman Özen, Abdalaziz Aljabour, Mahmut Kus, Mustafa Ersöz, “Refractory‐Metal‐Based Chalcogenides for Energy”, Adv Funct Materials, 32:47 (2022)
A. Yu. Ledneva, G. E. Chebanova, S. B. Artemkina, A. N. Lavrov, “CRYSTALLINE AND NANOSTRUCTURED MATERIALS BASED ON TRANSITION METAL DICHALCOGENIDES: SYNTHESIS AND ELECTRONIC PROPERTIES”, J Struct Chem, 63:2 (2022), 176
S. B. Artemkina, E. D. Grayfer, M. N. Ivanova, A. Yu. Ledneva, A. A. Poltarak, P. A. Poltarak, S. S. Yarovoi, S. G. Kozlova, V. E. Fedorov, “STRUCTURAL AND CHEMICAL FEATURES OF CHALCOGENIDES OF EARLY TRANSITION METALS”, J Struct Chem, 63:7 (2022), 1079
A I Romanenko, G E Chebanova, Tingting Chen, Wenbin Su, Hongchao Wang, “Review of the thermoelectric properties of layered oxides and chalcogenides”, J. Phys. D: Appl. Phys., 55:14 (2022), 143001
A I Romanenko, G E Chebanova, I N Katamanin, M V Drozhzhin, S B Artemkina, M-K Han, S-J Kim, Hongchao Wang, “Enhanced thermoelectric properties of polycrystalline CuCrS2-x
Se
x
(x = 0, 0.5, 1.0, 1.5, 2) samples by replacing chalcogens and sintering”, J. Phys. D: Appl. Phys., 55:13 (2022), 135302
G. Sanyal, A. Vaidyanathan, Ch. S. Rout, B. Chakraborty, “Recent developments in two-dimensional layered tungsten dichalcogenides based materials for gas sensing applications”, Mater. Today Commun., 28 (2021), 102717
A. I. Romanenko, G. E. Chebanova, M. V. Drozhzhin, I. N. Katamanin, V. Y. Komarov, M.-K. Han, S.-J. Kim, T. Chen, H. Wang, “Thermoelectric properties and phase transition of doped single crystals and polycrystals of bi2te3”, J. Am. Ceram. Soc., 104:12 (2021), 6242–6253
G. E. Yakovleva, A. Yu. Ledneva, A. I. Romanenko, V. E. Fedorov, B. A. Kolesov, K. R. Zhdanov, “Influence of composition and crystallite size on thermoelectric properties of layered tungsten dichalcogenides”, J. Struct. Chem., 61:11 (2020), 1721–1728
A. I. Romanenko, G. E. Yakovleva, V. E. Fedorov, S. B. Artemkina, A. Yu. Ledneva, K. R. Zhdanov, B. M. Kuchumov, V. A. Kuznetsov, H. Wang, S. Singh, Sh. Saini, M.-K. Han, S.-J. Kim, “Improved thermoelectric properties of layered ti(1-)(x)nb(x)s(2-)(y)se(y)solid solutions”, J. Am. Ceram. Soc., 103:11 (2020), 6289–6297
G. E. Yakovleva, A. I. Romanenko, A. Yu. Ledneva, V. A. Belyavin, V. A. Kuznetsov, A. S. Berdinsky, A. T. Burkov, P. P. Konstantinov, S. V. Novikov, M.-K. Han, S.-J. Kim, V. E. Fedorov, “Thermoelectric properties of w1-xnbxse2-ysy polycrystalline compounds”, J. Am. Ceram. Soc., 102:10 (2019), 6060–6067