Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2018, Volume 11, Issue 4, Pages 416–429
DOI: https://doi.org/10.17516/1997-1397-2018-11-4-416-429
(Mi jsfu683)
 

This article is cited in 1 scientific paper (total in 1 paper)

On a second order linear parabolic equation with variable coefficients in a non-regular domain of $\mathbb{R}^{3}$

Ferroudj Boulkouane, Arezki Kheloufim

Université de Bejaia, 6000 Béjaia, Algérie
Full-text PDF (199 kB) Citations (1)
References:
Abstract: This paper is devoted to the study of the following variable-coefficient parabolic equation in non-divergence form
\begin{equation*} \partial _{t}u-\sum_{i=1}^{2}a_{i}(t,x_{1},x_{2})\partial_{ii}u+\sum_{i=1}^{2}b_{i}(t,x_{1},x_{2})\partial _{i}u+c(t,x_{1},x_{2})u=f(t,x_{1},x_{2}), \end{equation*}
subject to Cauchy–Dirichlet boundary conditions. The problem is set in a non-regular domain of the form
\begin{equation*} Q=\left\{ \left( t,x_{1}\right) \in\mathbb{R}^{2}:0<t<T, \varphi _{1}\left( t\right) <x_{1}<\varphi _{2}\left( t\right)\right\} \times \left] 0,b\right[, \end{equation*}
where $ \varphi _{k},\; k=1,2$ are "smooth" functions. One of the main issues of this work is that the domain can possibly be non-regular, for instance, the singular case where $\varphi _{1}$ coincides with $\varphi_{2}$ for $t=0$ is allowed. The analysis is performed in the framework of anisotropic Sobolev spaces by using the domain decomposition method. This work is an extension of the constant-coefficients case studied in [15].
Keywords: parabolic equations, non-regular domains, variable coefficients, anisotropic Sobolev spaces. DOI: 10.17516/1997-1397-2018-11-4-416-429..
Received: 11.10.2017
Received in revised form: 22.01.2018
Accepted: 06.03.2018
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Citation: Ferroudj Boulkouane, Arezki Kheloufim, “On a second order linear parabolic equation with variable coefficients in a non-regular domain of $\mathbb{R}^{3}$”, J. Sib. Fed. Univ. Math. Phys., 11:4 (2018), 416–429
Citation in format AMSBIB
\Bibitem{BouKhe18}
\by Ferroudj~Boulkouane, Arezki~Kheloufim
\paper On a second order linear parabolic equation with variable coefficients in a non-regular domain of $\mathbb{R}^{3}$
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2018
\vol 11
\issue 4
\pages 416--429
\mathnet{http://mi.mathnet.ru/jsfu683}
\crossref{https://doi.org/10.17516/1997-1397-2018-11-4-416-429}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000442257900003}
Linking options:
  • https://www.mathnet.ru/eng/jsfu683
  • https://www.mathnet.ru/eng/jsfu/v11/i4/p416
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025