Abstract:
How to normalise similarity metric to a metric space for a clusterization? A new system of axioms describes the known generalizations of distance metrics and similarity metrics, the Pearson correlation coefficient and the cosine metrics. Equivalent definitions of order-preserving transformations of metrics (both monotonic and pivot-monotonic) are given in various terms. The metric definiteness of convex metric subspaces Rn and Z among the pivot-monotonic transformations is proved. Faster formulas for the monotonic normalization of metrics are discussed.
This work was performed under financial support from the Government, represented by the
Ministry of Education and Science of the Russian Federation (Project ID RFMEFI60716X0153).
Received: 18.11.2017 Received in revised form: 22.12.2017 Accepted: 20.02.2018
Bibliographic databases:
Document Type:
Article
UDC:
004.412
Language: English
Citation:
Sergej V. Znamenskij, “From similarity to distance: axiom set,monotonic transformations and metric determinacy”, J. Sib. Fed. Univ. Math. Phys., 11:3 (2018), 331–341
\Bibitem{Zna18}
\by Sergej~V.~Znamenskij
\paper From similarity to distance: axiom set,monotonic transformations and metric determinacy
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2018
\vol 11
\issue 3
\pages 331--341
\mathnet{http://mi.mathnet.ru/jsfu680}
\crossref{https://doi.org/10.17516/1997-1397-2018-11-3-331-341}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000442257300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049109746}
Linking options:
https://www.mathnet.ru/eng/jsfu680
https://www.mathnet.ru/eng/jsfu/v11/i3/p331
This publication is cited in the following 3 articles:
O. Rozinek, J. Mares, “The duality of similarity and metric spaces”, Appl. Sci.-Basel, 11:4 (2021), 1910
S. V. Znamenskij, “Stable assessment of the quality of similarity algorithms
of character strings and their normalizations”, Programmnye sistemy: teoriya i prilozheniya, 9:4 (2018), 561–578
S. V. Znamenskii, “Ustoichivaya otsenka kachestva algoritmov skhodstva simvolnykh strok i ikh normalizatsii”, Programmnye sistemy: teoriya i prilozheniya, 9:4 (2018), 579–596