Loading [MathJax]/jax/output/SVG/config.js
Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2017, Volume 10, Issue 4, Pages 463–473
DOI: https://doi.org/10.17516/1997-1397-2017-10-4-463-473
(Mi jsfu576)
 

This article is cited in 3 scientific papers (total in 3 papers)

Self-configuring nature inspired algorithms for combinatorial optimization problems

Olga Ev. Semenkina, Eugene A. Popov, Olga Er. Semenkina

Siberian State Aerospace University, Krasnoyarsky rabochy, 31, Krasnoyarsk, 660037, Russia
References:
Abstract: In this work authors introduce and study the self-configuring Genetic Algorithm (GA) and the self-configuring Ant Colony Optimization (ACO) algorithm and apply them to one of the most known combinatorial optimization task — Travelling Salesman Problem (TSP). The estimation of suggested algorithms performance is fulfilled on well-known benchmark TSP and then compared with other heuristics such as Lin–Kernigan (3-opt local search) and Intelligent Water Drops algorithm (IWDs). Numerical experiments show that suggested approach demonstrates the competitive performance. Both adaptive algorithms show good results on these problems as they outperform other algorithms with their settings with average performance.
Keywords: travelling Salesman problem, genetic algorithm, ant colony optimization, intelligent water drops algorithm, self-configuration.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 2.1680.2017/ПЧ
Research is performed with the support of the Ministry of Education and Science of Russian Federation within State Assignment project no. 2.1680.2017/ПЧ.
Received: 10.03.2017
Received in revised form: 10.06.2017
Accepted: 20.08.2017
Bibliographic databases:
Document Type: Article
UDC: 519.87
Language: English
Citation: Olga Ev. Semenkina, Eugene A. Popov, Olga Er. Semenkina, “Self-configuring nature inspired algorithms for combinatorial optimization problems”, J. Sib. Fed. Univ. Math. Phys., 10:4 (2017), 463–473
Citation in format AMSBIB
\Bibitem{SemPopSem17}
\by Olga~Ev.~Semenkina, Eugene~A.~Popov, Olga~Er.~Semenkina
\paper Self-configuring nature inspired algorithms for combinatorial optimization problems
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2017
\vol 10
\issue 4
\pages 463--473
\mathnet{http://mi.mathnet.ru/jsfu576}
\crossref{https://doi.org/10.17516/1997-1397-2017-10-4-463-473}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000418047300008}
Linking options:
  • https://www.mathnet.ru/eng/jsfu576
  • https://www.mathnet.ru/eng/jsfu/v10/i4/p463
  • This publication is cited in the following 3 articles:
    1. J. Ge, X. Liu, G. Liang, “Research on vehicle routing problem with soft time windows based on hybrid tabu search and scatter search algorithm”, CMC-Comput. Mat. Contin., 64:3 (2020), 1945–1958  crossref  isi  scopus
    2. O.E. Semenkina, E.A. Popov, “Nature-Inspired Algorithms for Solving a Hierarchical Scheduling Problem in Short-Term Production Planning”, HoBMSTU.SIE, 2019, no. 3 (126), 46  crossref
    3. Olga Ev. Semenkina, Eugene Popov, Olga Er. Semenkina, 2019 International Conference on Information Technologies (InfoTech), 2019, 1  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:207
    Full-text PDF :97
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025