Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2017, Volume 10, Issue 3, Pages 293–297
DOI: https://doi.org/10.17516/1997-1397-2017-10-3-293-297
(Mi jsfu555)
 

This article is cited in 1 scientific paper (total in 1 paper)

Algebraic sets with fully characteristic radicals

Mohammad Shahryari

Faculty of Mathematical Sciences, University of Tabriz, 29 Bahman Blvd, Tabriz, 5166616471, Iran
Full-text PDF (85 kB) Citations (1)
References:
Abstract: We obtain a necessary and sufficient condition for an algebraic set in a group to have a fully characteristic radical. As a result, we see that if the radical of a system of equation $S$ over a group $G$ is fully characteristic, then there exists a class $\mathfrak{X}$ of subgroups of $G$ such that elements of $S$ are identities of $\mathfrak{X}$.
Keywords: algebraic structures, equations, algebraic set, radical ideal, fully invariant congruence, fully characteristic subgroup.
Received: 26.10.2016
Received in revised form: 26.11.2016
Accepted: 06.03.2017
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: English
Citation: Mohammad Shahryari, “Algebraic sets with fully characteristic radicals”, J. Sib. Fed. Univ. Math. Phys., 10:3 (2017), 293–297
Citation in format AMSBIB
\Bibitem{Sha17}
\by Mohammad~Shahryari
\paper Algebraic sets with fully characteristic radicals
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2017
\vol 10
\issue 3
\pages 293--297
\mathnet{http://mi.mathnet.ru/jsfu555}
\crossref{https://doi.org/10.17516/1997-1397-2017-10-3-293-297}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412015000004}
Linking options:
  • https://www.mathnet.ru/eng/jsfu555
  • https://www.mathnet.ru/eng/jsfu/v10/i3/p293
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:204
    Full-text PDF :53
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024