Loading [MathJax]/jax/output/SVG/config.js
Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2017, Volume 10, Issue 2, Pages 158–169
DOI: https://doi.org/10.17516/1997-1397-2017-10-2-158-169
(Mi jsfu536)
 

This article is cited in 1 scientific paper (total in 1 paper)

Thermovibrational low-mode model of convection in a horizontal layer with longitudinal vibrations

Vadim A. Sharifulin

Perm State National Research Polytechnical University, Pozdeeva, 11/B, Perm, 614990, Russia
Full-text PDF (239 kB) Citations (1)
References:
Abstract: Thermovibrational convection in a horizontal layer of fluid between isothermal solid boundaries heated to different temperatures in the presence of longitudinal vibrations is considered in this paper. Stability and supercritical bifurcation of convection is investigated in a low-mode approximation. Bifurcation diagrams of supercritical modes are analytically obtained in the area of stability of supercritical convection. The analysis of diagrams shows that vibrations can lead to the rigid type of the occurrence of convection when upper boundary is heated. In addition, the hysteresis between stationary states is observed. The size of hysteresis interval of the Rayleigh numbers increases with the growth of the Gershuni number. A numerical study of the linear stability of the supercritical vibration-convective flows in the interval of Prandtl numbers $1 \leqslant \mathrm{Pr} \leqslant 10$ is conducted in the context of the proposed model. The region of flow stability decreases with increasing the Prandtl number. For any value of the Prandtl number from the given interval drastic excitation of stationary vibrational convection with hysteresis is possible.
Keywords: thermovibrational convection, low-mode model, flat layer, hard excitation, hysteresis.
Funding agency
The work was supported by the Perm National Research Polytechnic University under an internal university grant.
Received: 02.10.2016
Received in revised form: 10.01.2017
Accepted: 20.02.2017
Bibliographic databases:
Document Type: Article
UDC: 669.86:536.25
Language: English
Citation: Vadim A. Sharifulin, “Thermovibrational low-mode model of convection in a horizontal layer with longitudinal vibrations”, J. Sib. Fed. Univ. Math. Phys., 10:2 (2017), 158–169
Citation in format AMSBIB
\Bibitem{Sha17}
\by Vadim~A.~Sharifulin
\paper Thermovibrational low-mode model of convection in a horizontal layer with longitudinal vibrations
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2017
\vol 10
\issue 2
\pages 158--169
\mathnet{http://mi.mathnet.ru/jsfu536}
\crossref{https://doi.org/10.17516/1997-1397-2017-10-2-158-169}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412014600003}
Linking options:
  • https://www.mathnet.ru/eng/jsfu536
  • https://www.mathnet.ru/eng/jsfu/v10/i2/p158
  • This publication is cited in the following 1 articles:
    1. Tatyana P. Lyubimova, Sergey A. Plotnikov, Albert N. Sharifulin, Vladimir Ya. Modorskii, Sergey S. Neshev, Stanislav L. Kalyulin, “A Method Based on Thermo-Vibrational Effects for Hydrogen Transportation and Storage”, FDMP, 20:12 (2024), 2775  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:207
    Full-text PDF :65
    References:46
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025