Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2008, Volume 1, Issue 1, Pages 42–51 (Mi jsfu5)  

Visualizing Algebraic Curves: from Riemann to Grothendieck

George B. Shabatab

a Institute of Theoretical and Experimental Physics
b Russian State University for the Humanities
References:
Abstract: We consider the smallest possible ramification. The corresponding pairs are represented by only finite set of points in the individual Hurwitz space, but the set of Riemann surfaces admitting the meromorphic functions with the smallest possible number of critical values is dense in the moduli space.
Keywords: Riemann surface, algebraic curves, Hurwitz space.
Received: 23.10.2007
Received in revised form: 20.11.2007
Accepted: 05.12.2007
Bibliographic databases:
UDC: 517.55
Language: English
Citation: George B. Shabat, “Visualizing Algebraic Curves: from Riemann to Grothendieck”, J. Sib. Fed. Univ. Math. Phys., 1:1 (2008), 42–51
Citation in format AMSBIB
\Bibitem{Sha08}
\by George B.~Shabat
\paper Visualizing Algebraic Curves: from Riemann to Grothendieck
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2008
\vol 1
\issue 1
\pages 42--51
\mathnet{http://mi.mathnet.ru/jsfu5}
\elib{https://elibrary.ru/item.asp?id=11482583}
Linking options:
  • https://www.mathnet.ru/eng/jsfu5
  • https://www.mathnet.ru/eng/jsfu/v1/i1/p42
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:913
    Full-text PDF :438
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024