Abstract:
We consider $A$-analytic functions in case when $A$ is anti-holomorphic function. In paper for $A$-analytic functions the integral theorem of Cauchy, integral formula of Cauchy, expansion to Taylor series, expansion to Loran series, Picard's big theorem and Montel's theorem are proved.
Keywords:$A$-analytic function, integral theorem of Cauchy, integral formula of Cauchy, Taylor series, Loran series, Picard's big theorem, Montel's theorem.
Received: 10.05.2016 Received in revised form: 06.06.2016 Accepted: 01.07.2009
Bibliographic databases:
Document Type:
Article
UDC:517.55
Language: English
Citation:
Azimbai Sadullaev, Nasridin M. Jabborov, “On a class of $A$-analytic functions”, J. Sib. Fed. Univ. Math. Phys., 9:3 (2016), 374–383
\Bibitem{SadZha16}
\by Azimbai~Sadullaev, Nasridin~M.~Jabborov
\paper On a class of $A$-analytic functions
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2016
\vol 9
\issue 3
\pages 374--383
\mathnet{http://mi.mathnet.ru/jsfu496}
\crossref{https://doi.org/10.17516/1997-1397-2016-9-3-374-383}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412010000013}
Linking options:
https://www.mathnet.ru/eng/jsfu496
https://www.mathnet.ru/eng/jsfu/v9/i3/p374
This publication is cited in the following 10 articles:
Nasridin Zhabbarov, Behzod Husenov, IUTAM Bookseries, 40, Proceedings of the IUTAM Symposium on Optimal Guidance and Control for Autonomous Systems 2023, 2024, 287
Behzod Husenov, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 020006
Muhayyo Ne'matillayeva, Shohruh Khursanov, “Analog of the Weierstrass theorem and the Blaschke product for $A(z)$-analytic functions”, Zhurn. SFU. Ser. Matem. i fiz., 16:4 (2023), 420–430
N. M. Zhabborov, B. E. Khusenov, “Teorema Fatu dlya $A(z)$-analiticheskikh funktsii”, Izv. vuzov. Matem., 2023, no. 7, 13–22
N. M. Zhabborov, B. E. Husenov, “Fatou's Theorem for A(z)-Analytic Functions”, Russ Math., 67:7 (2023), 9
Jaafar Jabbar Qasim, Ahmed khalaf Radhi, “The Schwarz inequality and the Harnack's Theorem For A (z) – Analytical Function”, J. Phys.: Conf. Ser., 2322:1 (2022), 012021
N. M. Zhabborov, T. U. Otaboev, Sh. Ya. Khursanov, “The Schwartz Inequality and the Schwartz Formula for A-Analytic Functions”, J Math Sci, 264:6 (2022), 703
Nasridin M. Jabborov, “Morera’s theorem and functional series in the class of $A$-analytic functions”, Zhurn. SFU. Ser. Matem. i fiz., 11:1 (2018), 50–59
N. M. Zhabborov, T. U. Otaboev, Sh. Ya. Khursanov, “Neravenstvo Shvartsa i formula Shvartsa dlya $A$-analiticheskikh funktsii”, Sovremennye problemy matematiki i fiziki, SMFN, 64, no. 4, Rossiiskii universitet druzhby narodov, M., 2018, 637–649
Zh. K. Tishabaev, T. U. Otaboev, Sh. Ya. Khursanov, “Residues and Argument Principle for $A(z)$-Analytic Functions”, Journal of Mathematical Sciences, 245:3 (2020), 350–358