Loading [MathJax]/jax/output/SVG/config.js
Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2008, Volume 1, Issue 4, Pages 453–459 (Mi jsfu45)  

On Essential Self-Adjointness of the Schrödinger Operator whose Potential is Strongly Singular at a Point and on a Manifold

Marina S. Kosbergenova

National University of Uzbekistan named after M. Ulugbek
References:
Abstract: The essential self-adjointness of the Schrödinger operator with a strongly singular potential on manifolds is established.
Keywords: strongly singular potential, the Schrödinger operator.
Received: 10.08.2008
Received in revised form: 15.09.2008
Accepted: 15.11.2008
UDC: 517.95
Language: Russian
Citation: Marina S. Kosbergenova, “On Essential Self-Adjointness of the Schrödinger Operator whose Potential is Strongly Singular at a Point and on a Manifold”, J. Sib. Fed. Univ. Math. Phys., 1:4 (2008), 453–459
Citation in format AMSBIB
\Bibitem{Kos08}
\by Marina~S.~Kosbergenova
\paper On Essential Self-Adjointness of the Schr\"odinger Operator whose Potential is Strongly Singular at a~Point and on a~Manifold
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2008
\vol 1
\issue 4
\pages 453--459
\mathnet{http://mi.mathnet.ru/jsfu45}
Linking options:
  • https://www.mathnet.ru/eng/jsfu45
  • https://www.mathnet.ru/eng/jsfu/v1/i4/p453
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:396
    Full-text PDF :121
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025