Loading [MathJax]/jax/output/SVG/config.js
Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2015, Volume 8, Issue 3, Pages 343–351
DOI: https://doi.org/10.17516/1997-1397-2015-8-3-343-351
(Mi jsfu437)
 

This article is cited in 7 scientific papers (total in 7 papers)

On elastoplastic torsion of a rod with multiply connected cross-section

Sergey I. Senashova, Alexander V. Kondrina, Olga N. Cherepanovab

a Siberian State Aerospace University, Krasnoyarsky Rabochy, 31, Krasnoyarsk, 660014, Russia
b Institute of Mathematics and Computer Science, Siberian Federal University, Svobodny, 79, Krasnoyarsk, 660041, Russia
Full-text PDF (337 kB) Citations (7)
References:
Abstract: The classical problem of torsion of a straight rod with convex contour of the cross-section is considered in the paper. The cross-section is multiply connected domain. It is assumed that the region of plastic deformation occupies the whole outer boundary. To solve the problem the conservation laws are used. In the case when the boundary is piecewise smooth the solution is found in explicit form. Computer programs that allow one to find the elastic-plastic boundary in a rod under torsion with any precision are developed. Examples of calculation of elastic-plastic boundaries from presented analytical formulas are given. The obtained results are in good agreement in comparison with known solutions and experimental data.
Keywords: conservation laws, exact solution, unknown boundary, torsion problem of straight rod, multiply connected cross-section.
Received: 24.05.2015
Received in revised form: 14.06.2015
Accepted: 15.07.2015
Document Type: Article
UDC: 539.374
Language: English
Citation: Sergey I. Senashov, Alexander V. Kondrin, Olga N. Cherepanova, “On elastoplastic torsion of a rod with multiply connected cross-section”, J. Sib. Fed. Univ. Math. Phys., 8:3 (2015), 343–351
Citation in format AMSBIB
\Bibitem{SenKonChe15}
\by Sergey~I.~Senashov, Alexander~V.~Kondrin, Olga~N.~Cherepanova
\paper On elastoplastic torsion of a rod with multiply connected cross-section
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2015
\vol 8
\issue 3
\pages 343--351
\mathnet{http://mi.mathnet.ru/jsfu437}
\crossref{https://doi.org/10.17516/1997-1397-2015-8-3-343-351}
Linking options:
  • https://www.mathnet.ru/eng/jsfu437
  • https://www.mathnet.ru/eng/jsfu/v8/i3/p343
  • This publication is cited in the following 7 articles:
    1. Sergei I. Senashov, Irina L. Savostyanova, Olga N. Cherepanova, “Elasto-plastic twisting of a two-layer rod weakened by holes”, Zhurn. SFU. Ser. Matem. i fiz., 16:5 (2023), 591–597  mathnet
    2. Olga V. Gomonova, Sergey I. Senashov, Olga N. Cherepanova, “Distribution of zones of elastic and plastic deformation appearing in a layer under compression by two rigid parallel plates”, Zhurn. SFU. Ser. Matem. i fiz., 14:4 (2021), 492–496  mathnet  crossref
    3. Gomonova O.V., Senashov S.I., “Determining Elastic and Plastic Deformation Regions in a Problem of Unixaxial Tension of a Plate Weakened By Holes”, J. Appl. Mech. Tech. Phys., 62:1 (2021), 157–163  crossref  mathscinet  zmath  isi  scopus
    4. S. I. Senashov, O. V. Gomonova, I. L. Savostyanova, O. N. Cherepanova, “Symmetries and conservation laws in the theory of plasticity”, Reshetnev Readings 2018, IOP Conference Series-Materials Science and Engineering, 822, IOP Publishing Ltd, 2020, 012030  crossref  isi  scopus
    5. S. Senashov, I. Savostyanova, “About the limit state of deformable bodies”, 21St International Scientific Conference Reshetnev Readings-2017, IOP Conference Series-Materials Science and Engineering, 467, IOP Publishing Ltd, 2019, 012006  crossref  isi  scopus
    6. S. I. Senashov, O. V. Gomonova, “Construction of elastoplastic boundary in problem of tension of a plate weakened by holes”, Int. J. Non-Linear Mech., 108 (2019), 7–10  crossref  isi  scopus
    7. Sergei I. Senashov, Irina L. Savostyanova, Olga N. Cherepanova, “Solution of boundary value problems of plasticity with the use of conservation laws”, Zhurn. SFU. Ser. Matem. i fiz., 11:3 (2018), 356–363  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:197
    Full-text PDF :64
    References:34
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025