Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2015, Volume 8, Issue 1, Pages 38–48 (Mi jsfu404)  

This article is cited in 5 scientific papers (total in 5 papers)

On an inverse problem for quasi-linear elliptic equation

Anna Sh. Lyubanova

Institute of Space and Information Technology, Siberian Federal University, Kirenskogo, 26, Krasnoyarsk, 660026, Russia
Full-text PDF (192 kB) Citations (5)
References:
Abstract: The identification of an unknown constant coefficient in the main term of the partial differential equation $ - kM\psi(u) + g(x) u = f(x) $ with the Dirichlet boundary condition is investigated. Here $\psi(u)$ is a nonlinear increasing function of $u$, $M$ is a linear self-adjoint elliptic operator of the second order. The coefficient $k$ is recovered on the base of additional integral boundary data. The existence and uniqueness of the solution to the inverse problem involving a function $u$ and a positive real number $k$ is proved.
Keywords: inverse problem, boundary value problem, second-order elliptic equations, existence and uniqueness theorem, filtration.
Received: 12.11.2014
Received in revised form: 03.12.2014
Accepted: 20.12.2014
Document Type: Article
UDC: 517.95
Language: English
Citation: Anna Sh. Lyubanova, “On an inverse problem for quasi-linear elliptic equation”, J. Sib. Fed. Univ. Math. Phys., 8:1 (2015), 38–48
Citation in format AMSBIB
\Bibitem{Lyu15}
\by Anna~Sh.~Lyubanova
\paper On an inverse problem for quasi-linear elliptic equation
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2015
\vol 8
\issue 1
\pages 38--48
\mathnet{http://mi.mathnet.ru/jsfu404}
Linking options:
  • https://www.mathnet.ru/eng/jsfu404
  • https://www.mathnet.ru/eng/jsfu/v8/i1/p38
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024