Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2014, Volume 7, Issue 4, Pages 533–547 (Mi jsfu398)  

The solution of algebraic equations of continuous fractions of Nikiports

Vladimir I. Shmoylova, Gennadiy A. Kirichenkob

a Southern Scientific Center of RAS, Chehova, 41, Rostov-on-Don, 344006, Russia
b Southern Federal University, ITA, Nekrasovsky, 44, Taganrog, Rostov region, 347928, Russia
References:
Abstract: Analytical expressions representing all the roots of a random algebraic equation of $n$-th degree in terms of the equation coefficients are presented in the paper. These formulas consist of two ratios of infinite Toeplitz determinants. The diagonal elements of the determinants are the coefficients of algebraic equations. To find complex roots the method of summation of divergent continued fractions is used.
Keywords: algebraic equation, infinite Toeplitz determinant, $r/\varphi$-algorithm, diverging continuous fractions.
Received: 06.04.2014
Received in revised form: 06.07.2014
Accepted: 06.08.2014
Document Type: Article
UDC: 517.524
Language: English
Citation: Vladimir I. Shmoylov, Gennadiy A. Kirichenko, “The solution of algebraic equations of continuous fractions of Nikiports”, J. Sib. Fed. Univ. Math. Phys., 7:4 (2014), 533–547
Citation in format AMSBIB
\Bibitem{ShmKir14}
\by Vladimir~I.~Shmoylov, Gennadiy~A.~Kirichenko
\paper The solution of algebraic equations of continuous fractions of Nikiports
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2014
\vol 7
\issue 4
\pages 533--547
\mathnet{http://mi.mathnet.ru/jsfu398}
Linking options:
  • https://www.mathnet.ru/eng/jsfu398
  • https://www.mathnet.ru/eng/jsfu/v7/i4/p533
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024