Processing math: 100%
Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2014, Volume 7, Issue 3, Pages 324–330 (Mi jsfu378)  

This article is cited in 7 scientific papers (total in 7 papers)

Generator of solutions for 2D Navier–Stokes equations

Alexander V. Koptev

Makarov State University of Maritime and Inland Shipping, Dvinskaya, 5/7, Saint-Petersburg, 198035, Russia
Full-text PDF (129 kB) Citations (7)
References:
Abstract: On the paper under consideration the investigation of Navier–Stokes equations for 2D viscous incompressible fluid flow is present. An analysis is based on the first integral of these equations. It is revealed that all ratios are reduced to one governing equation which can be considered as a generator of solutions.
Keywords: viscous incompressible fluid, differential equation, partial derivative, nonlinearity, integral, generator of solutions.
Received: 05.03.2014
Received in revised form: 15.04.2014
Accepted: 25.05.2014
Document Type: Article
UDC: 532.516:517.958
Language: English
Citation: Alexander V. Koptev, “Generator of solutions for 2D Navier–Stokes equations”, J. Sib. Fed. Univ. Math. Phys., 7:3 (2014), 324–330
Citation in format AMSBIB
\Bibitem{Kop14}
\by Alexander~V.~Koptev
\paper Generator of solutions for $2D$ Navier--Stokes equations
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2014
\vol 7
\issue 3
\pages 324--330
\mathnet{http://mi.mathnet.ru/jsfu378}
Linking options:
  • https://www.mathnet.ru/eng/jsfu378
  • https://www.mathnet.ru/eng/jsfu/v7/i3/p324
  • This publication is cited in the following 7 articles:
    1. Ershkov S.V. Rachinskaya A. Prosviryakov E.Yu. Shamin R.V., “On the Semi-Analytical Solutions in Hydrodynamics of Ideal Fluid Flows Governed By Large-Scale Coherent Structures of Spiral-Type”, Symmetry-Basel, 13:12 (2021), 2307  crossref  isi  scopus
    2. Alexander V. Koptev, “Exact solution of 3D Navier–Stokes equations”, Zhurn. SFU. Ser. Matem. i fiz., 13:3 (2020), 306–313  mathnet  crossref
    3. Ershkov V S., Shamin V R., “a Riccati-Type Solution of 3D Euler Equations For Incompressible Flow”, J. King Saud Univ. Sci., 32:1 (2020), 125–130  crossref  isi  scopus
    4. Ershkov V S., Shamin V R., Giniyatullin A.R., “on a New Type of Non-Stationary Helical Flows For Incompressible 3D Navier-Stokes Equations”, J. King Saud Univ. Sci., 32:1 (2020), 459–467  crossref  isi  scopus
    5. Alexander V. Koptev, “Systematization and analysis of integrals of motion for an incompressible fluid flow”, Zhurn. SFU. Ser. Matem. i fiz., 11:3 (2018), 370–382  mathnet  crossref
    6. Alexander V. Koptev, “D'Alembert's paradox in near real conditions”, Zhurn. SFU. Ser. Matem. i fiz., 10:2 (2017), 170–180  mathnet  crossref
    7. A. V. Koptev, “Uravneniya Nave–Stoksa. Ot teorii k resheniyu prakticheskikh zadach”, Mezhdunar. nauch.-issled. zhurn., 2016, no. 7-4(49), 86–89  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:279
    Full-text PDF :100
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025