Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2014, Volume 7, Issue 3, Pages 311–317 (Mi jsfu376)  

Asymptotic behavior at infinity of the Dirichlet problem solution of the $2k$ order equation in a layer

Mikhail S. Kildyushov, Valery A. Nikishkin

Institute of Computer Technology, Moscow State University of Economics, Statistics and Informatics, Nezhinskaya, 7, Moscow, 119501, Russia
References:
Abstract: For the operator $(-\Delta)^{k} u(x)+\nu^{2k}u(x)$ with $x \in R^{n} (n\geqslant 2 , k\geqslant 2)$ an explicit fundamental solution is obtained, and for the equation $(- \Delta)^{k} u(x)+\nu^{2k}u(x)=f(x)$ (for $f\in C^{\infty}(R^{n})$ with compact support) the leading term of an asymptotic expansion at infinity of a solution is computed. The same result is obtained for the solution of the Dirichlet problem in a layer in $R^{n+1}$.
Keywords: asymptotic behavior, elliptic equation, fundamental solution, estimation of solution, $G$-Meyer function.
Received: 01.02.2014
Received in revised form: 01.03.2014
Accepted: 20.04.2014
Document Type: Article
UDC: 517.956.223
Language: English
Citation: Mikhail S. Kildyushov, Valery A. Nikishkin, “Asymptotic behavior at infinity of the Dirichlet problem solution of the $2k$ order equation in a layer”, J. Sib. Fed. Univ. Math. Phys., 7:3 (2014), 311–317
Citation in format AMSBIB
\Bibitem{KilNik14}
\by Mikhail~S.~Kildyushov, Valery~A.~Nikishkin
\paper Asymptotic behavior at infinity of the Dirichlet problem solution of the $2k$ order equation in a layer
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2014
\vol 7
\issue 3
\pages 311--317
\mathnet{http://mi.mathnet.ru/jsfu376}
Linking options:
  • https://www.mathnet.ru/eng/jsfu376
  • https://www.mathnet.ru/eng/jsfu/v7/i3/p311
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:175
    Full-text PDF :80
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024