|
Journal of Siberian Federal University. Mathematics & Physics, 2012, Volume 5, Issue 4, Pages 547–557
(Mi jsfu268)
|
|
|
|
This article is cited in 7 scientific papers (total in 7 papers)
Holomorphic continuation of functions along finite families of complex lines in the ball
Alexander M. Kytmanov, Simona G. Myslivets Institute of Mathematics, Siberian Federal University, Krasnoyarsk, Russia
Abstract:
In this paper we consider continuous functions given on the boundary of a ball $B$ of $\mathbb C^n$, $n>1$ and having one-dimensional property of holomorphic extension along the families of complex lines, passing through finite number of points of $B$. We study the problem of existence of holomorphic continuation of such functions in a ball $B$.
Keywords:
holomorphic continuation, Poisson integral.
Received: 29.03.2012 Received in revised form: 30.06.2012 Accepted: 31.08.2012
Citation:
Alexander M. Kytmanov, Simona G. Myslivets, “Holomorphic continuation of functions along finite families of complex lines in the ball”, J. Sib. Fed. Univ. Math. Phys., 5:4 (2012), 547–557
Linking options:
https://www.mathnet.ru/eng/jsfu268 https://www.mathnet.ru/eng/jsfu/v5/i4/p547
|
Statistics & downloads: |
Abstract page: | 375 | Full-text PDF : | 96 | References: | 63 |
|