Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2011, Volume 4, Issue 4, Pages 489–497 (Mi jsfu207)  

This article is cited in 1 scientific paper (total in 1 paper)

On the regularity Sylow's $p$-subgroups of symplectic and orthogonal groups over ring $\mathbb Z/p^m\mathbb Z$

Sergey G. Kolesnikova, Nikolay V. Maltsevb

a Institute of Mathematics, Siberian Federal University, Krasnoyarsk, Russia
b Institute of Basic Training, Siberian Federal University, Krasnoyarsk, Russia
Full-text PDF (180 kB) Citations (1)
References:
Abstract: For symplectic $Sp_{2n}(\mathbb Z/p^m\mathbb Z)$ and orthogonal $O^+_{2n}(\mathbb Z/p^m\mathbb Z)$ groups over residue ring of integers $\mathbb Z/p^m\mathbb Z,$ $p$ – prime integer, $m\ge1,$ we investigate analog Wehrfritz's question 8.3 from Kourovka notebook: for which $n,m,p$ Sylow $p$-subgroups of groups $Sp_{2n}(\mathbb Z/p^m\mathbb Z)$ and $O^+_{2n}(\mathbb Z/p^m\mathbb Z)$ are regular?
Keywords: regular $p$-group, symplectic group, orthogonal group, Sylow subgroup.
Received: 31.05.2011
Received in revised form: 25.08.2011
Accepted: 10.09.2011
Document Type: Article
UDC: 512.54
Language: Russian
Citation: Sergey G. Kolesnikov, Nikolay V. Maltsev, “On the regularity Sylow's $p$-subgroups of symplectic and orthogonal groups over ring $\mathbb Z/p^m\mathbb Z$”, J. Sib. Fed. Univ. Math. Phys., 4:4 (2011), 489–497
Citation in format AMSBIB
\Bibitem{KolMal11}
\by Sergey~G.~Kolesnikov, Nikolay~V.~Maltsev
\paper On the regularity Sylow's $p$-subgroups of symplectic and orthogonal groups over ring $\mathbb Z/p^m\mathbb Z$
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2011
\vol 4
\issue 4
\pages 489--497
\mathnet{http://mi.mathnet.ru/jsfu207}
Linking options:
  • https://www.mathnet.ru/eng/jsfu207
  • https://www.mathnet.ru/eng/jsfu/v4/i4/p489
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025