Loading [MathJax]/jax/output/CommonHTML/jax.js
Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2008, Volume 1, Issue 2, Pages 105–124 (Mi jsfu12)  

This article is cited in 5 scientific papers (total in 5 papers)

Multi-Logarithmic Differential Forms on Complete Intersections

Alexandr G. Aleksandrova, Avgust K. Tsikhb

a Institute of Control Sciences, Russian Academy of Sciences
b Institute of Mathematics, Siberian Federal University
Full-text PDF (398 kB) Citations (5)
References:
Abstract: We construct a complex ΩS(logC) of sheaves of multi-logarithmic differential forms on a complex analytic manifold S with respect to a reduced complete intersection CS, and define the residue map as a natural morphism from this complex onto the Barlet complex ωC of regular meromorphic differential forms on C. It follows then that sections of the Barlet complex can be regarded as a generalization of the residue differential forms defined by Leray. Moreover, we show that the residue map can be described explicitly in terms of certain integration current.
Keywords: complete intersection, multi-logarithmic differential forms, regular meromorphic differential forms, Poincaré residue, logarithmic residue, Grothendieck duality, residue current.
Received: 02.02.2008
Received in revised form: 10.04.2008
Accepted: 12.04.2008
Bibliographic databases:
UDC: 517.55
Language: English
Citation: Alexandr G. Aleksandrov, Avgust K. Tsikh, “Multi-Logarithmic Differential Forms on Complete Intersections”, J. Sib. Fed. Univ. Math. Phys., 1:2 (2008), 105–124
Citation in format AMSBIB
\Bibitem{AleTsi08}
\by Alexandr~G.~Aleksandrov, Avgust~K.~Tsikh
\paper Multi-Logarithmic Differential Forms on Complete Intersections
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2008
\vol 1
\issue 2
\pages 105--124
\mathnet{http://mi.mathnet.ru/jsfu12}
\elib{https://elibrary.ru/item.asp?id=11482590}
Linking options:
  • https://www.mathnet.ru/eng/jsfu12
  • https://www.mathnet.ru/eng/jsfu/v1/i2/p105
  • This publication is cited in the following 5 articles:
    1. Epure R., Pol D., “On Constructions of Free Singularities”, Bull. Math. Soc. Sci. Math. Roum., 64:1 (2021), 35–48  mathscinet  isi
    2. Pol D., “Characterizations of Freeness For Equidimensional Subspaces”, J. Singul., 20 (2020), 1–30  crossref  mathscinet  zmath  isi  scopus
    3. Schulze M., Tozzo L., “A Residual Duality Over Gorenstein Rings With Application to Logarithmic Differential Forms”, J. Singul., 18 (2018), 272–299  crossref  mathscinet  zmath  isi  scopus
    4. A. G. Aleksandrov, “The Multiple Residue and the Weight Filtration on the Logarithmic de Rham Complex”, Funct. Anal. Appl., 47:4 (2013), 247–260  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. N. A. Bushueva, “On isotopies and homologies of subvarieties of toric varieties”, Siberian Math. J., 51:5 (2010), 776–788  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:595
    Full-text PDF :177
    References:84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025