|
Journal of Siberian Federal University. Mathematics & Physics, 2023, Volume 16, Issue 1, Pages 135–141
(Mi jsfu1063)
|
|
|
|
Explicit formula for sums related to the generalized Bernoulli numbers
Brahim Mittouab a Department of Mathematics, University Kasdi Merbah Ouargla, Algeria
b EDPNL & HM Laboratory of ENS Kouba, Algeria
Abstract:
Let $\chi$ be a Dirichlet character modulo a prime number $p\geqslant 3$ and let $B_m(\chi)$ $(m=1,2,\ldots)$ be the generalized Bernoulli numbers associated with $\chi$. Explicit formulas for the sums: $$\sum_{\substack{\chi\mod p\\\chi(-1)=+1, \chi\neq\chi_0}}B_{m}(\chi)B_{n}(\overline{\chi})\text{ and }\sum_{\substack{\chi\mod p\\ \chi(-1)=-1}}B_{m}(\chi)B_{n}(\overline{\chi})$$ are given in this paper.
Keywords:
character sum, Dirichlet $L$-function, Bernoulli number, generalized Bernoulli number.
Received: 10.07.2022 Received in revised form: 16.09.2022 Accepted: 04.11.2022
Citation:
Brahim Mittou, “Explicit formula for sums related to the generalized Bernoulli numbers”, J. Sib. Fed. Univ. Math. Phys., 16:1 (2023), 135–141
Linking options:
https://www.mathnet.ru/eng/jsfu1063 https://www.mathnet.ru/eng/jsfu/v16/i1/p135
|
Statistics & downloads: |
Abstract page: | 50 | Full-text PDF : | 22 | References: | 18 |
|