Loading [MathJax]/jax/output/SVG/config.js
Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2022, Volume 15, Issue 3, Pages 356–365
DOI: https://doi.org/10.17516/1997-1397-2022-15-3-356-365
(Mi jsfu1003)
 

Idempotent values of commutators involving generalized derivations

Gurninder S. Sandhua, Shakir Alib

a Department of Mathematics Patel Memorial National College, Rajpura, Punjab, India
b Department of Mathematics, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
References:
Abstract: In the present article, we characterize generalized derivations and left multipliers of prime rings involving commutators with idempotent values. Precisely, we prove that if a prime ring of characteristic different from $2$ admits a generalized derivation $G$ with an associative nonzero derivation $g$ of $R$ such that $[G(u),u]^{n}=[G(u),u]$ for all $u\in\{[x,y]:x,y\in L\},$ where $L$ a noncentral Lie ideal of $R$ and $n>1$ is a fixed integer, then one of the following holds:
  • $R$ satisfies $s_{4}$ and there exists $\lambda\in C,$ the extended centroid of $R$ such that $G(x)=ax+xa+\lambda x$ for all $x\in R,$ where $a\in U,$ the Utumi quotient ring of $R,$
  • there exists $\gamma\in C$ such that $G(x)=\gamma x$ for all $x\in R.$
As an application, we describe the structure of left multipliers of prime rings satisfying the condition $([T^m (u),u] )^{n}=[T^m (u),u]$ for all $u\in \{[x,y]: x,y\in L\},$ where $m,n>1$ are fixed integers. In the end, we give an example showing that the hypothesis of our main theorem is not redundant.
Keywords: prime ring, Lie ideal, generalized derivation, GPI.
Funding agency Grant number
Science and Engineering Research Board MTR/2019/000603
The research of the second author is supported by SERB-DST Project India under Grant no. MTR/2019/000603.
Received: 24.12.2021
Received in revised form: 28.01.2022
Accepted: 20.03.2022
Document Type: Article
UDC: 517.9
Language: English
Citation: Gurninder S. Sandhu, Shakir Ali, “Idempotent values of commutators involving generalized derivations”, J. Sib. Fed. Univ. Math. Phys., 15:3 (2022), 356–365
Citation in format AMSBIB
\Bibitem{SanAli22}
\by Gurninder~S.~Sandhu, Shakir~Ali
\paper Idempotent values of commutators involving generalized derivations
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2022
\vol 15
\issue 3
\pages 356--365
\mathnet{http://mi.mathnet.ru/jsfu1003}
\crossref{https://doi.org/10.17516/1997-1397-2022-15-3-356-365}
Linking options:
  • https://www.mathnet.ru/eng/jsfu1003
  • https://www.mathnet.ru/eng/jsfu/v15/i3/p356
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:75
    Full-text PDF :50
    References:24
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025