Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2020, Volume 16, Number 3, Pages 312–363
DOI: https://doi.org/10.15407/mag16.03.312
(Mi jmag760)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the Cauchy–Riemann geometry of transversal curves in the 3-sphere

Emilio Mussoa, Lorenzo Nicolodib, Filippo Salisac

a Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
b Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 53/A, I-43124 Parma, Italy
c Istituto Nazionale di Alta Matematica, Italy
References:
Abstract: Let $\mathrm S^3$ be the unit sphere of $\mathbb C^2$ with its standard Cauchy–Riemann (CR) structure. This paper investigates the CR geometry of curves in $\mathrm S^3$ which are transversal to the contact distribution, using the local CR invariants of $\mathrm S^3$. More specifically, the focus is on the CR geometry of transversal knots. Four global invariants of transversal knots are considered: the phase anomaly, the CR spin, the Maslov index, and the CR self-linking number. The interplay between these invariants and the Bennequin number of a knot are discussed. Next, the simplest CR invariant variational problem for generic transversal curves is considered and its closed critical curves are studied.
Key words and phrases: CR geometry of the 3-sphere, contact geometry, transversal curves, CR invariants of transversal knots, self-linking number, Bennequin number, the strain functional for transversal curves, critical knots.
Funding agency Grant number
PRIN proto-collo 2017JZ2SW5-004
Istituto Nazionale di Alta Matematica "Francesco Severi"
Italian Ministry of Education, University and Research FFABR Grant 2017
Ministero dell'Istruzione, dell'Università e della Ricerca 2018–2022, CUP: E11G1800035000
Authors partially supported by PRIN 2017 “Real and Complex Manifolds: Topology, Geometry and Holomorphic Dynamics” (proto-collo 2017JZ2SW5-004); by the GNSAGA of INdAM; and by the FFABR Grant 2017 of MIUR. The third author was a research fellow of INdAM. The present research was also partially supported by MIUR grant “Dipartimenti di Eccellenza” 2018–2022, CUP: E11G18000350001, DISMA, Politecnico di Torino.
Received: 18.03.2020
Bibliographic databases:
Document Type: Article
MSC: 53C50, 53C42, 53A10
Language: English
Citation: Emilio Musso, Lorenzo Nicolodi, Filippo Salis, “On the Cauchy–Riemann geometry of transversal curves in the 3-sphere”, Zh. Mat. Fiz. Anal. Geom., 16:3 (2020), 312–363
Citation in format AMSBIB
\Bibitem{MusNicSal20}
\by Emilio~Musso, Lorenzo~Nicolodi, Filippo~Salis
\paper On the Cauchy--Riemann geometry of transversal curves in the 3-sphere
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2020
\vol 16
\issue 3
\pages 312--363
\mathnet{http://mi.mathnet.ru/jmag760}
\crossref{https://doi.org/10.15407/mag16.03.312}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000590794800007}
\elib{https://elibrary.ru/item.asp?id=44187795}
Linking options:
  • https://www.mathnet.ru/eng/jmag760
  • https://www.mathnet.ru/eng/jmag/v16/i3/p312
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:52
    Full-text PDF :21
    References:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024