Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2020, Volume 16, Number 2, Pages 161–173
DOI: https://doi.org/10.15407/mag16.02.161
(Mi jmag751)
 

Biharmonic Hopf hypersurfaces of complex Euclidean space and odd dimensional sphere

Najma Mosadegh, Esmaiel Abedi

Depertment of Mathematics Azarbaijan Shahid Madani University, Tabriz 53751 71379, Iran
References:
Abstract: In this paper, biharmonic Hopf hypersurfaces in the complex Euclidean space $C^{n+1}$ and in the odd dimensional sphere $S^{2n+1}$ are considered. We prove that the biharmonic Hopf hypersurfaces in $C^{n+1}$ are minimal. Also, we determine that the Weingarten operator $A$ of a biharmonic pseudo-Hopf hypersurface in the unit sphere $S^{2n+1}$ has exactly two distinct principal curvatures at each point if the gradient of the mean curvature belongs to $D^\perp$, and thus is an open part of the Clifford hypersurface $S^{n_1} (1/\sqrt{2})\times S^{n_2} (1/\sqrt{2})$, where $n_1 + n_2 =2n$.
Key words and phrases: biharmonic hypersurfaces, Hopf hypersurfaces, Chen's conjecture.
Received: 09.01.2019
Revised: 28.11.2019
Bibliographic databases:
Document Type: Article
MSC: 53A10, 53C42
Language: English
Citation: Najma Mosadegh, Esmaiel Abedi, “Biharmonic Hopf hypersurfaces of complex Euclidean space and odd dimensional sphere”, Zh. Mat. Fiz. Anal. Geom., 16:2 (2020), 161–173
Citation in format AMSBIB
\Bibitem{MosAbe20}
\by Najma~Mosadegh, Esmaiel~Abedi
\paper Biharmonic Hopf hypersurfaces of complex Euclidean space and odd dimensional sphere
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2020
\vol 16
\issue 2
\pages 161--173
\mathnet{http://mi.mathnet.ru/jmag751}
\crossref{https://doi.org/10.15407/mag16.02.161}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000546757800004}
\elib{https://elibrary.ru/item.asp?id=43922809}
Linking options:
  • https://www.mathnet.ru/eng/jmag751
  • https://www.mathnet.ru/eng/jmag/v16/i2/p161
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:61
    Full-text PDF :41
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024