Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2020, Volume 16, Number 2, Pages 138–160
DOI: https://doi.org/10.15407/mag16.02.138
(Mi jmag750)
 

Automorphisms of cellular divisions of $2$-sphere induced by functions with isolated critical points

Anna Kravchenkoa, Sergiy Maksymenkob

a Taras Shevchenko National University of Kyiv, Ukraine
b Institute of Mathematics, National Academy of Sciences of Ukraine
References:
Abstract: Let $f:S^2\to \mathbb{R}$ be a Morse function on the $2$-sphere and $K$ be a connected component of some level set of $f$ containing at least one saddle critical point. Then $K$ is a $1$-dimensional CW-complex cellularly embedded into $S^2$, so the complement $S^2\setminus K$ is a union of open $2$-disks $D_1,\ldots, D_k$. Let $\mathcal{S}_{K}(f)$ be the group of isotopic to the identity diffeomorphisms of $S^2$ leaving invariant $K$ and also each level set $f^{-1}(c)$, $c\in\mathbb{R}$. Then each $h\in \mathcal{S}_{K}(f)$ induces a certain permutation $\sigma_{h}$ of those disks. Denote by $G = \{ \sigma_h \mid h \in \mathcal{S}_{K}(f)\}$ the group of all such permutations. We prove that $G$ is isomorphic to a finite subgroup of $SO(3)$.
Key words and phrases: surface, Morse function, diffeomorphisms.
Received: 18.11.2019
Revised: 29.01.2020
Bibliographic databases:
Document Type: Article
MSC: 20E22, 57M60, 22F50
Language: English
Citation: Anna Kravchenko, Sergiy Maksymenko, “Automorphisms of cellular divisions of $2$-sphere induced by functions with isolated critical points”, Zh. Mat. Fiz. Anal. Geom., 16:2 (2020), 138–160
Citation in format AMSBIB
\Bibitem{KraMak20}
\by Anna~Kravchenko, Sergiy~Maksymenko
\paper Automorphisms of cellular divisions of $2$-sphere induced by functions with isolated critical points
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2020
\vol 16
\issue 2
\pages 138--160
\mathnet{http://mi.mathnet.ru/jmag750}
\crossref{https://doi.org/10.15407/mag16.02.138}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000546757800003}
Linking options:
  • https://www.mathnet.ru/eng/jmag750
  • https://www.mathnet.ru/eng/jmag/v16/i2/p138
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:76
    Full-text PDF :18
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024