Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2018, Volume 14, Number 4, Pages 519–531
DOI: https://doi.org/10.15407/mag14.04.519
(Mi jmag709)
 

This article is cited in 7 scientific papers (total in 7 papers)

The maximal “kinematical” invariance group for an arbitrary potential revised

A. G. Nikitin

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka Street, Kyiv-4, 01001, Ukraine
Full-text PDF (370 kB) Citations (7)
References:
Abstract: Group classification of one particle Schrödinger equations with arbitrary potentials (C.P. Boyer, Helv. Phys. Acta 47 (1974), p. 450) is revised. The corrected completed list of non-equivalent potentials and the corresponding symmetries is presented together with exact identification of symmetry algebras and admissible equivalence transformations.
Key words and phrases: Schrödinger equation, Lie symmetries, equivalence transformations.
Received: 03.03.2018
Document Type: Article
MSC: 34L15, 34L20, 35R10
Language: English
Citation: A. G. Nikitin, “The maximal “kinematical” invariance group for an arbitrary potential revised”, Zh. Mat. Fiz. Anal. Geom., 14:4 (2018), 519–531
Citation in format AMSBIB
\Bibitem{Nik18}
\by A.~G.~Nikitin
\paper The maximal ``kinematical'' invariance group for an arbitrary potential revised
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2018
\vol 14
\issue 4
\pages 519--531
\mathnet{http://mi.mathnet.ru/jmag709}
\crossref{https://doi.org/10.15407/mag14.04.519}
Linking options:
  • https://www.mathnet.ru/eng/jmag709
  • https://www.mathnet.ru/eng/jmag/v14/i4/p519
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025