Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2018, Volume 14, Number 4, paper published in the English version journal
DOI: https://doi.org/10.15407/mag14.04.510
(Mi jmag708)
 

This article is cited in 2 scientific papers (total in 2 papers)

Asymptotic properties of integrals of quotients when the numerator oscillates and the denominator degenerates

Sergei Kuksinabc

a Institut de Mathémathiques de Jussieu–Paris Rive Gauche, CNRS, Université Paris Diderot, UMR 7586, Sorbonne Paris Cité, F-75013, Paris, France
b School of Mathematics, Shandong University, Shanda Nanlu, 27, 250100, PRC
c Saint Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russia
Full-text PDF (367 kB) Citations (2)
References:
Abstract: We study asymptotic expansion as $\nu\to0$ for integrals over ${ \mathbb{R} }^{2d}=\{(x,y)\}$ of quotients of the form $F(x,y) \cos(\lambda x\cdot y) \big/ \big( (x\cdot y)^2+\nu^2\big)$, where $\lambda\ge 0$ and $F$ decays at infinity sufficiently fast. Integrals of this kind appear in the theory of wave turbulence.
Key words and phrases: asymptotic of integrals, oscillating integrals, four-waves interaction.
Funding agency Grant number
Russian Science Foundation 18-11-00032
Centre National de la Recherche Scientifique PRC CNRS/RFBR 2017-2019 No 1556
We acknowledge the support from the Centre National de la Recherche Scientifique (France) through the grant PRC CNRS/RFBR 2017-2019 No 1556, and from the Russian Science Foundation through the project 18-11-00032.
Received: 01.02.2018
Document Type: Article
MSC: 34E05, 34E10
Language: English
Citation: Sergei Kuksin
Citation in format AMSBIB
\Bibitem{Kuk18}
\by Sergei~Kuksin
\mathnet{http://mi.mathnet.ru/jmag708}
\crossref{https://doi.org/10.15407/mag14.04.510}
Linking options:
  • https://www.mathnet.ru/eng/jmag708
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:269
    Full-text PDF :53
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024