Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2018, Volume 14, Number 3, Pages 336–361
DOI: https://doi.org/10.15407/mag14.03.336
(Mi jmag703)
 

The extended Leibniz rule and related equations in the space of rapidly decreasing functions

Hermann Königa, Vitali Milmanb

a Mathematisches Seminar, Universität Kiel, 24098 Kiel, Germany
b School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
References:
Abstract: We solve the extended Leibniz rule $T(f\cdot g)=Tf \cdot Ag+Af\cdot Tg$ for operators $T$ and $A$ in the space of rapidly decreasing functions in both cases of complex and real-valued functions. We find that $Tf$ may be a linear combination of logarithmic derivatives of $f$ and its complex conjugate $\overline{f}$ with smooth coefficients up to some finite orders $m$ and $n$ respectively and $Af=f^{m}\cdot \overline{f}$ $^{n} $. In other cases $Tf$ and $Af$ may include separately the real and the imaginary part of $f$. In some way the equation yields a joint characterization of the derivative and the Fourier transform of $f$. We discuss conditions when $T$ is the derivative and $A$ is the identity. We also consider differentiable solutions of related functional equations reminiscent of those for the sine and cosine functions.
Key words and phrases: rapidly decreasing functions, extended Leibniz rule, Fourier transform.
Funding agency Grant number
MINERVA Foundation
Alexander von Humboldt-Stiftung
United States - Israel Binational Science Foundation (BSF) 200 6079
Israel Science Foundation 387/09
The first author is supported by Minerva. The second author is supported in part by the Alexander von Humboldt Foundation, by ISF grant 387/09 and by BSF grant 200 6079.
Received: 08.02.2018
Bibliographic databases:
Document Type: Article
MSC: 39B42, 47A62, 26A24
Language: English
Citation: Hermann König, Vitali Milman, “The extended Leibniz rule and related equations in the space of rapidly decreasing functions”, Zh. Mat. Fiz. Anal. Geom., 14:3 (2018), 336–361
Citation in format AMSBIB
\Bibitem{KonMil18}
\by Hermann~K\"onig, Vitali~Milman
\paper The extended Leibniz rule and related equations in the space of rapidly decreasing functions
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2018
\vol 14
\issue 3
\pages 336--361
\mathnet{http://mi.mathnet.ru/jmag703}
\crossref{https://doi.org/10.15407/mag14.03.336}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000450683100005}
Linking options:
  • https://www.mathnet.ru/eng/jmag703
  • https://www.mathnet.ru/eng/jmag/v14/i3/p336
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :59
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024